首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A kinetic model for dynein, a molecular motor, complexed with microtubule fragments, is considered. The model explains the experimental observations of oscillatory movements in surprisingly simple axonemal fragments perfused by the ATP solution. The model explains at first time the oscillatory dynein activity as a phenomenon induced by two dynein heads cooperative interaction in the axoneme. The oscillation form, frequency, and amplitude, observed for the model, are close to these experimental characteristics. Kinetic parameters, used in the model, are close to the known experimental parameters.  相似文献   

2.
A regular cycle of dynein-driven sliding, doublet separation, doublet reassociation, and resumption of sliding was previously observed by Aoyama and Kamiya in outer doublet pairs obtained after partial dissociation of Chlamydomonas flagella. In the work presented here, computer programming based on previous simulations of oscillatory bending of microtubules was extended to simulate the cycle of events observed with doublet pairs. These simulations confirm the straightforward explanation of this oscillation by inactivation of dynein when doublets separate and resumption of dynein activity after reassociation. Reassociation is augmented by a dynein-dependent “adhesive force” between the doublets. The simulations used a simple mathematical model to generate velocity-dependent shear force, and an independent elastic model for adhesive force. Realistic results were obtained with a maximum adhesive force that was 36% of the maximum shear force. Separation between a pair of doublets is the result of a buckling instability that also initiates a period of uniform sliding that enlarges the separation. A similar instability may trigger sliding initiation events in flagellar bending cycles.  相似文献   

3.
Axonemal dynein is the molecular motor responsible for the rhythmic beating of eukaryotic cilia and flagella. An individual axonemal dynein molecule is capable of both unidirectional and oscillatory motion along a microtubule (Nature 393 (1998) 711). We propose a model which links the physical motion of a two-headed dynein molecule to its ATP hydrolysis cycle, and which exhibits both processive and oscillatory behaviors. A mathematical analysis of the model is used to make experimentally testable predictions.  相似文献   

4.
The functions of the nexin links of a flagellar axoneme have not been clearly demonstrated. Taking into account both the elastic (Hookean) characteristics and the possible jump of the nexin links, we calculated the sliding to bending conversion of a theoretical model in a tip-ward direction step by step, according to the essential principles proposed by the geometric clutch hypothesis [Lindemann, 1994: J Theoret Biol 168:175-189]: the activity of the dynein arms depends on the transverse forces induced by the axonemal curvature. In our calculations, however, the transverse forces that are involved in the regulation of the activities of the dynein arms were due to the extension of the nexin links located upstream of a given abscissa. This allowed us to define a bent segment as the axonemal portion at whose proximal and distal ends the nexin links were relaxed, and as fully extended as possible, respectively. The model creates an apparent disorder in the orientation of the nexin links as already observed [Bozkurt and Wooley, 1993: Cell Motil Cytoskeleton 24:109-118; Wooley, 1997: J Cell Sci 110:85-94]. We propose that the nexin links are involved in a mechanical cycle, whose 3 stages are (1) rapid extension, (2) slow relaxation, and (3) stand-by. The rapid extension is compatible with the mechanical interactions between the nexin links and the inner dynein arms with which they form the dynein regulatory complex. This was correlated with the oscillating properties of the nexin links along the axoneme that allow them to be one of the regulatory elements of the local ATPase activity of the dynein arms.  相似文献   

5.
To help understand the functional properties of inner and outer dynein arms in axonemal motility, sliding velocities of outer doublets were measured in disintegrating axonemes of Chlamydomonas mutants lacking either of the arms. Measurements under improved solution conditions yielded significantly higher sliding velocities than those observed in a previous study [Okagaki and Kamiya, 1986, J. Cell Biol. 103:1895-1902]. As in the previous study, it was found that the velocities in axonemes of wild type (wt) and a mutant (oda1) missing the outer arm differ greatly: 18.5 +/- 4.1 microns/sec for wt and 4.4 +/- 2.3 microns/sec for oda1 at 0.5 mM Mg-ATP. In contrast, axonemes of two types of mutants (ida2 and ida4) that lacked different sets of two inner-arm heavy chains displayed velocities almost identical with the wild-type velocity. Moreover, axonemes of a non-motile double mutant ida2 X ida4 underwent sliding disintegration at a similar high velocity, although less frequently than in axonemes of single mutants. These observations support the hypothesis that the inner and outer dynein arms in disintegrating axonemes drive microtubules at different speeds and it is the faster outer arm that determines the overall speed when both arms are present. The inner arm may be important for the initiation of sliding. The axoneme thus appears to be equipped with two (or more) types of motors with different intrinsic speeds.  相似文献   

6.
Flagellar axonemes of sea urchin sperm display high-frequency (approximately 300 Hz) vibration with nanometer-scale amplitudes in the presence of ATP (Kamimura, S., and R. Kamiya. 1989. Nature (Lond.). 340:476-478). The vibration appears to represent normal mechanochemical interaction between dynein and microtubules because the dependence of the frequency on MgATP concentration is similar to that of the axonemal motility, and because it is inhibited by micromolar concentrations of vanadate. In this study a two-dimensional photo-sensor was used to characterize this phenomenon in detail. Several new features were revealed. First, the vibration was found to be due to a back-and-forth movement of the doublet microtubules along the axonemal length. Two beads attached to different parts of the same axoneme vibrated in unison, i.e., synchronized exactly in phase. This suggested that the outer doublet can be regarded as a stiff rod in vibrating axonemes. Second, evidence was obtained that the amplitude of the vibration reflected the number of active dynein arms. Third, under certain conditions, the vibration amplitude took stepwise values of 8 x N + 4 nm (N = 0, 1, 2, 3, or 4), indicating that the amplitude of microtubule sliding was limited by the size of tubulin dimer (8 nm) or monomer (4 nm). To explain this phenomenon, a model is presented based on an assumption that the force production by dynein is turned off when dynein is subjected to tensile force; i.e., dynein is assumed to be equipped with a feedback mechanism necessary for oscillation.  相似文献   

7.
We previously described the Trypanin family of cytoskeleton-associated proteins that have been implicated in dynein regulation [Hill et al., J Biol Chem2000; 275(50):39369-39378; Hutchings et al., J Cell Biol2002;156(5):867-877; Rupp and Porter, J Cell Biol2003;162(1):47-57]. Trypanin from T. brucei is part of an evolutionarily conserved dynein regulatory system that is required for regulation of flagellar beat. In C. reinhardtii, the trypanin homologue (PF2) is part of an axonemal 'dynein regulatory complex' (DRC) that functions as a reversible inhibitor of axonemal dynein [Piperno et al., J Cell Biol1992;118(6):1455-1463; Gardner et al., J Cell Biol1994;127(5):1311-1325]. The DRC consists of an estimated seven polypeptides that are tightly associated with axonemal microtubules. Association with the axoneme is critical for DRC function, but the mechanism by which it attaches to the microtubule lattice is completely unknown. We demonstrate that Gas11, the mammalian trypanin/PF2 homologue, associates with microtubules in vitro and in vivo. Deletion analyses identified a novel microtubule-binding domain (GMAD) and a distinct region (IMAD) that attenuates Gas11-microtubule interactions. Using single-particle binding assays, we demonstrate that Gas11 directly binds microtubules and that the IMAD attenuates the interaction between GMAD and the microtubule. IMAD is able to function in either a cis- or trans-orientation with GMAD. The discovery that Gas11 provides a direct linkage to microtubules provides new mechanistic insight into the structural features of the dynein-regulatory complex.  相似文献   

8.
The “9+2” axoneme is a highly specific cylindrical machine whose periodic bending is due to the cumulative shear of its 9 outer doublets of microtubules. Because of the discrete architecture of the tubulin monomers and the active appendices that the outer doublets carry (dynein arms, nexin links and radial spokes), this movement corresponds to the relative shear of these topological verniers, whose characteristics depend on the geometry of the wave train. When an axonemal segment bends, this induces the compressed and dilated conformations of the tubulin monomers and, consequently, the modification of the spatial frequencies of the appendages that the outer doublets carry. From a dynamic point of view, the adjustments of the spatial frequencies of the elements of the two facing verniers that must interact create different longitudinal periodic patterns of distribution of the joint probability of the molecular interaction as a function of the location of the doublet pairs around the axonemal cylinder and their spatial orientation within the axonemal cylinder. During the shear, these patterns move along the outer doublet intervals at a speed that ranges from one to more than a thousand times that of sliding, in two opposite directions along the two opposite halves of the axoneme separated by the bending plane, respecting the polarity of the dynein arms within the axoneme. Consequently, these waves might be involved in the regulation of the alternating activity of the dynein arms along the flagellum, because they induce the necessary intermolecular dialog along the axoneme since they could be an element of the local dynamic stability/instability equilibrium of the axoneme. This complements the geometric clutch model [Lindemann, C., 1994. A “geometric clutch” hypothesis to explain oscillations of the axoneme of cilia and flagella. J. Theor. Biol. 168, 175-189].  相似文献   

9.
The multi-dynein hypothesis [Asai, 1995: Cell Motil Cytoskeleton 32:129-132] states: (1) there are many different dynein HC isoforms; (2) each isoform is encoded by a different gene; (3) different isoforms have different functions. Many studies provide evidence in support of the first two statements [Piperno et al., 1990: J Cell Biol 110:379-389; Kagami and Kamiya, 1992: J Cell Sci 103:653-664; Gibbons, 1995: Cell Motil Cytoskeleton 32:136-144; Porter et al., 1996: Genetics 144:569-585; Xu et al., 1999: J Eukaryot Microbiol 46:606-611] and there is evidence that outer arms and inner arms play different roles in flagellar beating [Brokaw and Kamiya, 1987: Cell Motil. Cytoskeleton 8:68-75]. However, there are few studies rigorously testing in vivo whether inner arm dyneins, especially the 1-headed inner arm dyneins, play unique roles. This study tested the third tenet of the multi-dynein hypothesis by introducing mutations into three inner arm dynein HC genes (DYH8, 9 and 12) that are thought to encode HCs associated with 1-headed inner arm dyneins. Southern blots, Northern blots, and RT-PCR analyses indicate that all three mutants (KO-8, 9, and 12) are complete knockouts. Each mutant swims slower than the wild-type cells. The beat frequency of KO-8 cells is lower than that of the wild-type cells while the beat frequencies of KO-9 and KO-12 are not different from that of wild-type cells. Our results suggest that each inner arm dynein HC is essential for normal cell motility and cannot be replaced functionally by other dynein HCs and that not all of the 1-headed inner arm dyneins play the same role in ciliary motility. Thus, the results of our study support the multi-dynein hypothesis [Asai, 1995: Cell Motil Cytoskeleton 32:129-132].  相似文献   

10.
To gain a further understanding of axonemal dynein regulation, mutant strains of Chlamydomonas reinhardtii that had defects in both phototactic behavior and flagellar motility were identified and characterized. ptm1, ptm2, and ptm3 mutant strains exhibited motility phenotypes that resembled those of known inner dynein arm region mutant strains, but did not have biochemical or genetic phenotypes characteristic of other inner dynein arm mutations. Three other mutant strains had defects in the f class of inner dynein arms. Dynein extracts from the pf9-4 strain were missing the entire f complex. Strains with mutations in pf9/ida1, ida2, or ida3 failed to assemble the f dynein complex and did not exhibit phototactic behavior. Fractionated dynein from mia1-1 and mia2-1 axonemes exhibited a novel f class inner dynein arm biochemical phenotype; the 138-kD f intermediate chain was present in altered phosphorylation forms. In vitro axonemal dynein activity was reduced by the mia1-1 and mia2-1 mutations. The addition of kinase inhibitor restored axonemal dynein activity concomitant with the dephosphorylation of the 138-kD f intermediate chain. Dynein extracts from uni1-1 axonemes, which specifically assemble only one of the two flagella, contained relatively high levels of the altered phosphorylation forms of the 138-kD intermediate chain. We suggest that the f dynein complex may be phosphoregulated asymmetrically between the two flagella to achieve phototactic turning. C hlamydomonas reinhardtii flagella use an asymmetric beat stroke, similar to a breast stroke, to propel cells forward. To generate the asymmetric beat stroke, dynein activity must be regulated both along the length and around the circumference of the flagella. If all dyneins were active at the same time, the flagella would exist in a state of rigor. The dyneins are located in two rows along the length of the doublet microtubules. The inner dynein arms are heterogeneous in composition with at least eight heavy chains and various intermediate and light chains arranged in an elaborate morphology that repeats every 96 nm (Kagami and Kamiya, 1992; Mastronarde et al., 1992). In contrast, the outer dynein arms are biochemically and morphologically homogeneous (Huang et al., 1979; Mitchell and Rosenbaum, 1985; Kamiya, 1988); each outer dynein arm contains three dynein heavy chains and 10 intermediate and light chains. The inner and outer arms appear to have different functions in the formation of the beat stroke; the inner arms generate the waveform of the beat stroke, whereas the outer arms provide additional force to the waveform (Brokaw and Kamiya, 1987).Previous workers had shown that dynein regulation is imposed, in part, by activities of the radial spokes and the central pair complex. Mutant strains that are missing or have altered radial spokes or central pair complexes are paralyzed even if they have a full complement of dyneins (Adams et al., 1981; Piperno et al., 1981). Many extragenic suppressors of this paralysis phenotype do not restore the missing structures, but rather suppress by altering either inner arm or outer arm region structures (Huang et al., 1982a ; Piperno et al., 1992; Porter et al., 1992, 1994). These data suggest that direct or indirect interactions exist between the dynein arms and the radial spokes or central pair complexes.Over 80 proteins in Chlamydomonas flagella are phosphorylated (Piperno et al., 1981), which makes dynein regulation by phosphorylation an attractive model. Hasegawa et al. (1987) showed that a higher percentage of demembranated axonemes reactivate with ATP after treatments that lower cAMP levels or inhibit cAMP-dependent protein kinase (cAPK)1. In flagella from other organisms, cAMP has an opposite role (for reviews see Tash and Means, 1983; Tash, 1989). An increased frequency of reactivation also occurs after the NP-40–soluble components are extracted from the axonemes, which suggests that the cAPK, target phosphoproteins, and endogenous phosphatases are all integral axonemal components (Hasegawa et al., 1987). In quantitative sliding disintegration assays, the inner dynein arm activity of axonemes that are missing the radial spokes is increased in the presence of pharmacological or specific peptide inhibitors of cAPK (Smith and Sale, 1992; Howard et al., 1994). Reconstitution experiments with axonemes that are missing the radial spokes suggest that radial spokes normally function to activate the inner dynein arms by inhibiting a cAPK (Smith and Sale, 1992; Howard et al., 1994). It is not known if the cAPK directly phosphorylates inner dynein arm components or phosphorylates another axonemal component that then acts on the inner dynein arms (Howard et al., 1994).The f (originally called I1) inner arms are biochemically the best studied inner dynein arm complex. This complex is comprised of two dynein heavy chains and three intermediate chains of 140, 138, and 110 kD; it can be purified by sucrose density centrifugation (Piperno and Luck, 1981; Smith and Sale, 1991; Porter et al., 1992) or ion-exchange chromatography (Kagami and Kamiya, 1992). The purified complex has low ATPase activity and only rarely translocates microtubules in vitro (Smith and Sale, 1991; Kagami and Kamiya, 1992). Deep-etch EM of the purified f inner arm shows a two-headed complex that is connected to a common base by thin stalks (Smith and Sale, 1991). Longitudinal EM image analyses have shown that this complex is located just proximally of the first radial spoke in each 96-nm repeating unit (Piperno et al., 1990; Mastronarde et al., 1992). Mutations at three different loci (PF9/ IDA1, IDA2, and IDA3) result in the complete loss of the f complex (Kamiya et al., 1991; Kagami and Kamiya, 1992; Porter et al., 1992). The PF9/IDA1 locus encodes a dynein heavy chain that is believed to be one of the two heavy chains that are components of the f complex (Porter, 1996).We undertook a new approach to identify axonemal components involved in dynein regulation; we isolated and characterized mutant strains that were unable to perform phototaxis. In Chlamydomonas, phototaxis is a behavior by which cells orient to the direction of incident light. Light direction is detected by the eyespot, an asymmetrically located organelle, and a signal is transmitted to the flagella using voltage-gated ion channels (Harz and Hegemann, 1991). For cells to perform phototaxis, the waveforms of the two flagella are altered coordinately. The trans flagellum, which is located farther from the eyespot, beats with a larger front amplitude than the cis flagellum to turn the cell toward the light (Rüffer and Nultsch, 1991). It seemed likely that the alterations in the beat amplitudes needed for correct phototactic behavior could be caused by differential dynein regulation in the cis and trans flagella. Therefore, we hypothesized that there should be a class of phototactic mutant strains that is not able to perform phototaxis because of defects in the regulation of dyneins. Three of the eight phototactic mutant strains that we characterized had biochemical defects in the f class of inner dynein arms. One of these strains, pf9-4, was missing the entire f complex, and the other two strains, mia1-1 and mia2-1, exhibited a novel f class inner dynein arm biochemical phenotype. These observations suggest that the f inner dynein arm is a target for regulation during phototaxis.  相似文献   

11.
Dyneins are minus end directed microtubule motors that play a critical role in ciliary and flagellar movement. Ciliary dyneins, also known as axonemal dyneins, are characterized based on their location on the axoneme, either as outer dynein arms or inner dynein arms. The I1 dynein is the best-characterized subspecies of the inner dynein arms; however the interactions between many of the components of the I1 complex and the axoneme are not well defined. In an effort to elucidate the interactions in which the I1 components are involved, we performed zero-length crosslinking on axonemes and studied the crosslinked products formed by the I1 intermediate chains, IC138 and IC140. Our data indicate that IC138 and IC140 bind directly to microtubules. Mass-spectrometry analysis of the crosslinked product identified both α- and β-tubulin as the IC138 and IC140 binding partners. This was further confirmed by crosslinking experiments carried out on purified I1 fractions bound to Taxol-stabilized microtubules. Furthermore, the interaction between IC140 and tubulin is lost when IC138 is absent. Our studies support previous findings that intermediate chains play critical roles in the assembly, axonemal targeting and regulation of the I1 dynein complex.  相似文献   

12.
Irradiation of demembranated flagella of sea urchin sperm at 365 nm in the presence of 0.05-1 mM MgATP and 5-10 microM vanadate (Vi) cleaves the alpha and beta heavy chains of the outer arm dynein at the same site and at about the same rate as reported previously for the solubilized dynein (Gibbons, I. R., Lee-Eiford, A., Mocz, G., Phillipson, C. A., Tang, W.-J. Y., and Gibbons, B. H. (1987) J. Biol. Chem. 262, 2780-2786). The decrease in intact alpha and beta heavy chain material is biphasic, with about 80% being lost with a half-time of 8-10 min, and the remainder more slowly. Five other axonemal polypeptides of Mr greater than 350,000 are lost similarly, concomitant with the appearance of at least 9 new peptides of Mr 150,000-250,000. The motility of irradiated sperm flagella upon subsequent dilution into reactivation medium containing 1 mM ATP and 2.5 mM catechol shows a progressive decrease in flagellar beat frequency for irradiation times that produce up to about 50% cleavage of the dynein heavy chains; more prolonged irradiation causes irreversible loss of motility. Competition between photocleaved and intact outer arm dynein for rebinding to dynein-depleted sperm flagella shows that cleavage has little effect upon the ability for rebinding, although the cleaved dynein partially inhibits subsequent motility. Substitution of MnATP for the MgATP in the irradiation medium prevents the loss of all of the axonemal polypeptides during irradiation for up to 60 min and also protects the potential for subsequent flagellar motility. It is concluded that loss of the five axonemal polypeptides upon irradiation results from a Vi-sensitized photocleavage similar to that which occurs in the alpha and beta heavy chains of outer arm dynein and that these polypeptides represent Vi-inhibitable ATPase subunits of dyneins located in the inner arms and possibly elsewhere in the flagellar axoneme.  相似文献   

13.
Dynein heavy chains are involved in microtubule-dependent transport processes. While cytoplasmic dyneins are involved in chromosome or vesicle movement, axonemal dyneins are essential for motility of cilia and flagella. Here we report the isolation of dynein heavy chain (DHC)-like sequences in man and mouse. Using polymerase chain reaction and reverse-transcribed human and mouse testis RNA cDNA fragments encoding the conserved ATP binding region of dynein heavy chains were amplified. We identified 11 different mouse and eight human dynein-like sequences in testis which show high similarity to known dyneins of different species such as rat, sea urchin or green algae. Sequence similarities suggest that two of the mouse clones and one human clone encode putative cytoplasmic dynein heavy chains, whereas the other sequences show higher similarity to axonemal dyneins. Two of nine axonemal dynein isoforms identified in the mouse testis are more closely related to known outer arm dyneins, while seven clones seem to belong to the inner arm dynein group. Of the isolated human isoforms three clones were classified as outer arm and four clones as inner arm dynein heavy chains. Each of the DHC cDNAs corresponds to an individual gene as determined by Southern blot experiments. The alignment of the deduced protein sequences between human (HDHC) and mouse (MDHC) dynein fragments reveals higher similarity between single human and mouse sequences than between two sequences of the same species. Human and mouse cDNA fragments were used to isolate genomic clones. Two of these clones, gHDHC7 and gMDHC7, are homologous genes encoding axonemal inner arm dyneins. While the human clone is assigned to 3p21, the mouse gene maps to chromosome 14.  相似文献   

14.
Summary— In most models of wave propagation in eucaryotic flagella and cilia, a clear distinction is made between the dynein dependent microtubule sliding which represents the oscillatory motor and the bending mechanism which regulates wave propagation. Little is known about the physical elements regulating the latter: in the present model, the bending propagation is postulated to be supported by an open/close cyclic mechanism protease/ligase dependent, which involves transient covalent links between adjacent microtubular doublets; this open/close cycle propagates in register with the powering action of the dynein motor along the exoneme. The implications of the model are discussed in relation to previous data which involve protease/ligase in the axonemal function as well as other data which can be integrated by the proposed model.  相似文献   

15.
Ciliogenesis in human fetal airway epithelium occurs from 11 to 24 gestational weeks. Using genetic and antigenic markers specific for human axonemal dynein heavy chain 9, we characterized temporal aspects of axonemal dynein expression associated with large airway epithelial ciliogenesis during human fetal development. Late in the first trimester, an undifferentiated columnar epithelium is characteristic of the large airways, and immunocytochemical studies exhibited focal localization of axonemal dynein antigen on luminal epithelial cell borders at sites consistent with emergent ciliary beds. From 12 to 22 wk, immunocytochemical labeling of new ciliary beds was prominent, and localization within the cytoplasm of epithelial cells suggested avid synthesis of axonemal dynein in advance of ciliogenic events. Quantitative RT-PCR of tracheal RNA and in situ hybridization studies compared favorably with immunocytochemical findings with the earliest expression of axonemal dynein at 9-10 wk gestation. These studies have documented that axonemal dynein is expressed early in human fetal life during airway epithelial maturation and well before histological or ultrastructural evidence of ciliogenesis is apparent.  相似文献   

16.
17.
Cilia and flagella are motile organelles that play various roles in eukaryotic cells. Ciliary movement is driven by axonemal dyneins (outer arm and inner arm dyneins) that bind to peripheral microtubule doublets. Elucidating the molecular mechanism of ciliary movement requires the genetic engineering of axonemal dyneins; however, no expression system for axonemal dyneins has been previously established. This study is the first to purify recombinant axonemal dynein with motile activity. In the ciliated protozoan Tetrahymena, recombinant outer arm dynein purified from ciliary extract was able to slide microtubules in a gliding assay. Furthermore, the recombinant dynein moved processively along microtubules in a single-molecule motility assay. This expression system will be useful for investigating the unique properties of diverse axonemal dyneins and will enable future molecular studies on ciliary movement.  相似文献   

18.
《The Journal of cell biology》1994,127(6):1683-1692
Genetic, biochemical, and structural data support a model in which axonemal radial spokes regulate dynein-driven microtubule sliding in Chlamydomonas flagella. However, the molecular mechanism by which dynein activity is regulated is unknown. We describe results from three different in vitro approaches to test the hypothesis that an axonemal protein kinase inhibits dynein in spoke-deficient axonemes from Chlamydomonas flagella. First, the velocity of dynein-driven microtubule sliding in spoke-deficient mutants (pf14, pf17) was increased to wild-type level after treatment with the kinase inhibitors HA-1004 or H-7 or by the specific peptide inhibitors of cAMP-dependent protein kinase (cAPK) PKI(6-22)amide or N alpha-acetyl-PKI(6-22)amide. In particular, the peptide inhibitors of cAPK were very potent, stimulating half-maximal velocity at 12-15 nM. In contrast, kinase inhibitors did not affect microtubule sliding in axonemes from wild- type cells. PKI treatment of axonemes from a double mutant missing both the radial spokes and the outer row of dynein arms (pf14pf28) also increased microtubule sliding to control (pf28) velocity. Second, addition of the type-II regulatory subunit of cAPK (RII) to spoke- deficient axonemes increased microtubule sliding to wild-type velocity. Addition of 10 microM cAMP to spokeless axonemes, reconstituted with RII, reversed the effect of RII. Third, our previous studies revealed that inner dynein arms from the Chlamydomonas mutants pf28 or pf14pf28 could be extracted in high salt buffer and subsequently reconstituted onto extracted axonemes restoring original microtubule sliding activity. Inner arm dyneins isolated from PKI-treated axonemes (mutant strain pf14pf28) generated fast microtubule sliding velocities when reconstituted onto both PKI-treated or control axonemes. In contrast, dynein from control axonemes generated slow microtubule sliding velocities on either PKI-treated or control axonemes. Together, the data indicate that an endogenous axonemal cAPK-type protein kinase inhibits dynein-driven microtubule sliding in spoke-deficient axonemes. The kinase is likely to reside in close association with its substrate(s), and the substrate targets are not exclusively localized to the central pair, radial spokes, dynein regulatory complex, or outer dynein arms. The results are consistent with a model in which the radial spokes regulate dynein activity through suppression of a cAMP- mediated mechanism.  相似文献   

19.
The waveform of the flagellum of the sea urchin spermatozoon is mainly planar, but its 3D-properties were evoked for dynamic reasons and described as helical. In 1975, the apparent twisting pattern of the sea urchin axoneme was described [Gibbons I. 1975. The molecular basis of flagellar motility in sea urchin spermatozoa. In: Inoué S, Stephens R, editors. Molecular and cellular movement. New York: Raven Press, p. 207-232.] and was considered to be one of the main elements involved in axonemal behaviour. Recently, planar, quasi-planar, and helical waveforms were observed when the flagellum of sea urchin sperm cells was submitted to an increase in viscosity. The quasi-planar conformation seemed to be due to the alternating torsion of the inter-bend segments [Woolley D, Vernon G. 2001. A study of helical and planar waves on sea urchin sperm flagella, with a theory of how they are generated. J. Exp. Biol. 204:1333-1345]. These three waveforms, which are due to a change in axonemal activity, are possibly used by the sperm cells to adapt their movement to variations in the physico-chemical characteristics of the medium (seawater) in which the cells normally swim. We constructed a simple model to describe qualitatively the central shear (between the axonemal doublets and the central pair) and the tangential shear (between the doublets themselves). In this model, the 3D-bending is resolved into components in two perpendicular planes and each of the nine planes of inter-doublet interaction defines a potential bending plane that is independently regulated. These shears were calculated for the three waveforms and their inter-conversion. This allowed us to propose that axoneme is resolved in successive modules delineated by abscissas where the sliding is always nil. We discuss these data concerning the axonemal machinery, and especially the alternating activity of opposite sides of (two) neutral surface(s) that seem(s) to be responsible for this inter-conversion, and for the possible twist of the axoneme during the beating.  相似文献   

20.
We present here for the first time a 3D reconstruction of in situ axonemal outer dynein arms. This reconstruction has been obtained by electron tomography applied to a series of tilted images collected from metal replicas of rapidly frozen, cryofractured, and metal-replicated sperm axonemes of the cecidomid dipteran Monarthropalpus flavus. This peculiar axonemal model consists of several microtubular laminae that proved to be particularly suitable for this type of analysis. These laminae are sufficiently planar to allow the visualization of many dynein molecules within the same fracture face, allowing us to recover a significant number of equivalent objects and to improve the signal-to-noise ratio of the reconstruction by applying advanced averaging protocols. The 3D model we obtained showed the following interesting structural features: First, each dynein arm has two head domains that are almost parallel and are obliquely oriented with respect to the longitudinal axis of microtubules. The two heads are therefore positioned at different distances from the surface of the A-tubule. Second, each head domain consists of a series of globular subdomains that are positioned on the same plane. Third, a stalk domain originates as a conical region from the proximal head and ends with a small globular domain that contacts the B-tubule. Fourth, the stem region comprises several globular subdomains and presents two distinct points of anchorage to the surface of the A-tubule. Finally, and most importantly, contrary to what has been observed in isolated dynein molecules adsorbed to flat surfaces, the stalk and the stem domains are not in the same plane as the head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号