首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein families and RNA recognition   总被引:1,自引:0,他引:1  
Chen Y  Varani G 《The FEBS journal》2005,272(9):2088-2097
This minireview series examines the structural principles underlying the biological function of RNA-binding proteins. The structural work of the last decade has elucidated the structures of essentially all the major RNA-binding protein families; it has also demonstrated how RNA recognition takes place. The ribosome structures have further integrated this knowledge into principles for the assembly of complex ribonucleoproteins. Structural and biochemical work has revealed unexpectedly that several RNA-binding proteins bind to other proteins in addition to RNA or instead of RNA. This tremendous increase in the structural knowledge has expanded not only our understanding of the RNA recognition principle, but has also provided new insight into the biological function of these proteins and has helped to design better experiments to understand their biological roles.  相似文献   

2.
3.
Protein structure can provide new insight into the biological function of a protein and can enable the design of better experiments to learn its biological roles. Moreover, deciphering the interactions of a protein with other molecules can contribute to the understanding of the protein's function within cellular processes. In this study, we apply a machine learning approach for classifying RNA-binding proteins based on their three-dimensional structures. The method is based on characterizing unique properties of electrostatic patches on the protein surface. Using an ensemble of general protein features and specific properties extracted from the electrostatic patches, we have trained a support vector machine (SVM) to distinguish RNA-binding proteins from other positively charged proteins that do not bind nucleic acids. Specifically, the method was applied on proteins possessing the RNA recognition motif (RRM) and successfully classified RNA-binding proteins from RRM domains involved in protein-protein interactions. Overall the method achieves 88% accuracy in classifying RNA-binding proteins, yet it cannot distinguish RNA from DNA binding proteins. Nevertheless, by applying a multiclass SVM approach we were able to classify the RNA-binding proteins based on their RNA targets, specifically, whether they bind a ribosomal RNA (rRNA), a transfer RNA (tRNA), or messenger RNA (mRNA). Finally, we present here an innovative approach that does not rely on sequence or structural homology and could be applied to identify novel RNA-binding proteins with unique folds and/or binding motifs.  相似文献   

4.
RNA-binding proteins are key regulators of plant gene expression. Consistent with this, the Arabidopsis genome encodes many RNA-binding proteins that are genetically required for normal development and for responding to environmental changes. However, the direct RNA targets and RNA processing events that these RNA-binding proteins control are poorly understood. In order to facilitate the functional characterization of RNA-binding proteins, we have applied the RNA immunoprecipitation assay to Arabidopsis. Working with the U2B"–U2 snRNA interaction as a model experimental system, we show that treatment of intact plants with formaldehyde allows immunocapture of U2 snRNA using antibodies that recognize U2B" fused to the generic GFP tag. When coupled with recent developments in whole-genome tiling arrays and high-throughput next-generation sequencing, this combination of procedures and technology has the potential to allow systematic functional analysis of plant RNA-binding proteins.  相似文献   

5.
RNA-binding proteins of bovine rotavirus.   总被引:14,自引:9,他引:14       下载免费PDF全文
  相似文献   

6.
Most RNA-binding modules are small and bind few nucleotides. RNA-binding proteins typically attain the physiological specificity and affinity for their RNA targets by combining several RNA-binding modules. Here, we review how disordered linkers connecting RNA-binding modules govern the specificity and affinity of RNA–protein interactions by regulating the effective concentration of these modules and their relative orientation. RNA-binding proteins also often contain extended intrinsically disordered regions that mediate protein–protein and RNA–protein interactions with multiple partners. We discuss how these regions can connect proteins and RNA resulting in heterogeneous higher-order assemblies such as membrane-less compartments and amyloid-like structures that have the characteristics of multi-modular entities. The assembled state generates additional RNA-binding specificity and affinity properties that contribute to further the function of RNA-binding proteins within the cellular environment.  相似文献   

7.
To study the functions of RNA-binding proteins independent of their RNA-binding activity, tethering methods have been developed, based on the use of the RNA-binding domain of a well-characterized RNA-binding protein and its target RNA. Two bacteriophage proteins have mainly been used as tethers: the MS2 coat protein and the lambda N protein. Here we report an alternative system using the Tat (trans-activator) peptide from the bovine immunodeficiency virus (BIV), which binds to BIV-TAR (trans-activation response) RNA. We demonstrate the usefulness of this system by applying it to the analysis of the TNRC6B protein, a component of the microRNA-induced silencing complex.  相似文献   

8.
RNA-binding proteins, which are involved in the synthesis, processing, transport, translation, and degradation of RNA, are emerging as important, often multifunctional, cellular regulatory proteins. Although relatively few RNA-binding proteins have been studied in plants, they are being identified with increasing frequency, both genetically and biochemically. RNA-binding proteins that regulate chloroplast mRNA stability and translation in response to light and that have been elegantly analyzed in Clamydomonas reinhardtii have counterparts with similar functions in higher plants. Several recent reports describe mutations in genes encoding RNA-binding proteins that affect plant development and hormone signaling.  相似文献   

9.
10.
A + U-Rich elements (AREs) have been extensively investigated as cis-acting determinants of rapid mRNA turnover. Recently, a number of RNA-binding proteins interacting with AREs have been described. This article presents strategies and techniques used by our laboratory to identify and characterize a family of ARE-binding proteins collectively termed AUF1. However, these techniques may be applied to the study of any protein displaying sequence-specific RNA binding activity. The techniques described here include the purification of native AUF1 from cultured cells as well as the preparation of recombinant AUF1 proteins using a bacterial expression system. Analyses of RNA-protein interactions are also described, including the use of gel mobility shift assays with synthetic RNA probes to monitor specific RNA binding activity in cell extracts or with recombinant proteins. Variations of this technique are also described to evaluate the RNA binding affinity of recombinant proteins and the use of specific RNA competitors to assess RNA determinants of protein binding specificity. Other techniques presented include the identification of specific proteins in RNA:protein complexes using antibody supershifts and the estimation of molecular weights of RNA-binding proteins by UV crosslinking. Results of individual experiments are presented as examples of some techniques. Throughout the article, suggestions are included to avoid commonly encountered problems and to assist in the optimization of these techniques for the study of other RNA-binding proteins.  相似文献   

11.
Many RNA-binding proteins have modular structures and are composed of multiple repeats of just a few basic domains that are arranged in various ways to satisfy their diverse functional requirements. Recent studies have investigated how different modules cooperate in regulating the RNA-binding specificity and the biological activity of these proteins. They have also investigated how multiple modules cooperate with enzymatic domains to regulate the catalytic activity of enzymes that act on RNA. These studies have shown how, for many RNA-binding proteins, multiple modules define the fundamental structural unit that is responsible for biological function.  相似文献   

12.
13.
Neural RNA recognition motif (RRM)-type RNA-binding proteins play essential roles in neural development. To search for a new member of neural RRM-type RNA-binding protein, we screened rat cerebral expression library with polyclonal antibody against consensus RRM sequences. We have cloned and characterized a rat cDNA that belongs to RRM-type RNA-binding protein family, which we designate as drb1. Orthologs of drb1 exist in human and mouse. The predicted amino acid sequence reveals an open reading frame of 476 residues with a corresponding molecular mass of 53kDa and consists of four RNA-binding domains. drb1 gene is specifically expressed in fetal (E12, E16) rat brain and gradually reduced during development. In situ hybridization demonstrated neuron-specific signals in fetal rat brain. RNA-binding assay indicated that human Drb1 protein possesses binding preference on poly(C)RNA. These results indicate that Drb1 is a new member of neural RNA-binding proteins, which expresses under spatiotemporal control.  相似文献   

14.
Using the O'Farrell method, a two-dimensional analysis of RNA-binding proteins from rabbit reticulocytes was carried out. The latter have been shown to consist of several scores of polypeptides, predominantly of a moderately basic type with isoelectric points ranging from 7 to 9.5. The two main components of RNA-binding proteins have been identified as eukaryotic elongation factors EF-1L and EF-2. The RNA-binding elongation factors in eukaryotes have higher isoelectric points and somewhat higher molecular masses as compared to their functional analogs from prokaryotes EF-Tu and EF-G having no affinity for RNA. These results are compatible with the assumption that a nonspecific RNA-binding ability of elongation factors in eukaryotes could have arisen in the course of evolution due to the appearance of an additional RNA-binding "domain" of an alkaline type.  相似文献   

15.
C Z Lee  J H Lin  M Chao  K McKnight    M M Lai 《Journal of virology》1993,67(4):2221-2227
Hepatitis delta antigen (HDAg) is an RNA-binding protein with binding specificity for hepatitis delta virus (HDV) RNA (J. H. Lin, M. F. Chang, S. C. Baker, S. Govindarajan, and M. M. C. Lai, J. Virol. 64:4051-4058, 1990). By amino acid sequence homology search, we have identified within its RNA-binding domain two stretches of an arginine-rich motif (ARM), which is present in many prokaryotic and eukaryotic RNA-binding proteins. The first one is KERQDHRRRKA and the second is EDEKRERRIAG, and they are separated by 29 amino acids. Deletion of either one of these ARM sequences resulted in the total loss of the in vitro RNA-binding activity of HDAg. Thus, HDAg is different from other RNA-binding proteins in that it requires two ARM-like sequences for its RNA-binding activity. Replacement of the spacer sequence between the two ARMs with a shorter stretch of sequence also reduced RNA binding in vitro. Furthermore, site-specific mutations of the basic amino acid residues in both ARMs resulted in the total loss or reduction of RNA-binding activity. The biological significance of the RNA-binding activity was studied by examining the trans-activating activity of the RNA-binding mutants. The plasmids expressing HDAgs with various mutations in the RNA-binding motifs were cotransfected with a replication-defective HDV dimer cDNA construct into COS cells. It was found that all the HDAg mutants which had lost the in vitro RNA-binding activity also lost the ability to complement the defect of HDV RNA replication. We conclude that the trans-activating function of HDAg requires its binding to HDV RNA.  相似文献   

16.
RNA-protein interactions play essential roles in regulating gene expression. While some RNA-protein interactions are “specific”, that is, the RNA-binding proteins preferentially bind to particular RNA sequence or structural motifs, others are “non-RNA specific.” Deciphering the protein-RNA recognition code is essential for comprehending the functional implications of these interactions and for developing new therapies for many diseases. Because of the high cost of experimental determination of protein-RNA interfaces, there is a need for computational methods to identify RNA-binding residues in proteins. While most of the existing computational methods for predicting RNA-binding residues in RNA-binding proteins are oblivious to the characteristics of the partner RNA, there is growing interest in methods for partner-specific prediction of RNA binding sites in proteins. In this work, we assess the performance of two recently published partner-specific protein-RNA interface prediction tools, PS-PRIP, and PRIdictor, along with our own new tools. Specifically, we introduce a novel metric, RNA-specificity metric (RSM), for quantifying the RNA-specificity of the RNA binding residues predicted by such tools. Our results show that the RNA-binding residues predicted by previously published methods are oblivious to the characteristics of the putative RNA binding partner. Moreover, when evaluated using partner-agnostic metrics, RNA partner-specific methods are outperformed by the state-of-the-art partner-agnostic methods. We conjecture that either (a) the protein-RNA complexes in PDB are not representative of the protein-RNA interactions in nature, or (b) the current methods for partner-specific prediction of RNA-binding residues in proteins fail to account for the differences in RNA partner-specific versus partner-agnostic protein-RNA interactions, or both.  相似文献   

17.
18.
A special fraction of RNA-binding proteins with a non-specific affinity for RNA is present in the extracts of eukaryotic cells. Earlier these proteins were considered exclusively as a pool of free informosomal proteins. It has been shown that a significant part (about 1/3) of RNA-binding proteins is found in labile association with mono- and polyribosome mass, respectively. The labile-associated proteins dissociate from the complex with mono- and polyribosomes with an increase in the ionic RNA-binding proteins bind to particles due to the non-specific affinity for the exposed part of RNA of mono- and polyribosomes. The decrease of the ionic strength leads to the stabilization of the RNA-binding proteins-polyribosomes complexes and enables purification of these complexes. A direct comparison by the O'Farrell two-dimensional analysis has shown that practically all the proteins that are labile-associated with polyribosomes are present within the preparation of free RNA-binding proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号