首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytochrome-enhanced germination of curled dock (Rumex crispus L.) seeds is further stimulated by pretreatments in solutions of 0.5 to 2 molar methanol and 0.03 to ≥ 0.3 molar 2-propanol during a 2-day 20°C imbibition. Similar pretreatments in 0.1 molar ethanol, acetaldehyde, and n-propanol inhibit phytochrome-enhanced germination. If exposure to ethanol is delayed until 16 hours after a red irradiation, seeds escape the ethanol inhibition indicating a mechanism other than toxicity. The rate of escape from ethanol inhibition roughly parallels the escape from phytochrome control in seeds held in water only, indicating possible ethanol effects on phytochrome. It was found that ethanol pretreatment prevents the far-red absorbing form of phytochrome (Pfr) from acting but does not accelerate dark decay or prevent transformation. Ethanol inhibition may be prevented if ethanol pretreatment is at 10°C instead of 20°C, or may be overcome by transferring ethanol-pretreated seeds to 10°C in water. Similarly, ethanol inhibition can be overcome by a 2-hour 40°C temperature shift concluding the pretreatment. It is proposed that the ethanol causes perturbations at a membrane which prevent Pfr from acting.  相似文献   

2.
High germination of curly dock (Rumex crispus L.) seeds is evident after suitable imbibition and temperature shift treatment, but germination at constant temperatures fails without an input of far red-absorbing form of phytochrome. Preliminary imbibitions at high temperatures (30 C) sharply reduce germination induced by temperature shifts. High germination may be restored by low energies of red radiation, or by brief far red adequate for the photosteady state. Prolonged far red during imbibition also nullifies temperature shift-induced germination. After prolonged far red, high germination may be restored by red radiation of an energy dependent upon the duration of the far red treatment. The evidence supports the conclusion that dark germination induced by temperature shifts arises from the interaction of pre-existent far red-absorbing form of phytochrome in the mature seeds with the temperature shift.  相似文献   

3.
40℃,1h的热激能完全阻止皱叶酸模种子在25℃暗吸胀过程中诱发的二次休眠。经热激处理的种子萌发率在97%以上,而对照种子的萌发率仅10%。热激的主要作用在于解除果壳对种子萌发的压制。3′-脱氧腺苷(3mmol/L)不影响热激的这种效果,但是蛋白质合成抑制剂——亚胺环己酮(1mmol/L)的存在完全压制了热激的效应,种子萌发率与对照的一样,仅10%。热激与光(红光)在阻止酸模种子二次休眠诱发上表现出添加效应。  相似文献   

4.
Seeds of giant foxtail (Setaria faberi Herm.) entered secondary dormancy after pretreatment in H2O at 35°C. Pretreatment in 0.1 m ethanol, or several other substances with anesthetic properties, prevented secondary dormancy induction. Pretreatment in 0.5 m ethanol inhibited germination in darkness, but germination could be stimulated by a red irradiation. Germination was initially insensitive to light. Two separate responses are indicated. The first, affected by a variety of substances and low (0.1 m or less) concentrations of ethanol, is related to anesthetic effects and prevention of secondary dormancy. The second, induction of response to red irradiation, is caused by 0.5 m ethanol and some closely related substances. The anesthetic effect is accomplished within the first 8 hours of imbibition while the phytochrome induction effect required treatment for more than 24 hours. Both responses were lost if the 35°C imbibition began in H2O. Involvement of cell membranes is suggested in the prevention of secondary dormancy by anesthetics.  相似文献   

5.
Dark germination of Amaranthus retroflexus L. seeds at 35° increased after several days of prechilling at 20° or lower. Irradiation with far-red light for short periods during the early hours of a prechilling period at 10° inhibited subsequent dark germination at 35°. The inhibition was completely reversible with red light. Far-red irradiation in the latter part of the prechilling period was less effective. Increased dark germination of A. retroflexus seeds following a prechilling period at 20° or less is attributed to action of preexistent PFR, the far-red absorbing form of phytochrome, within the seeds. Inactivation of PFR was found to proceed ca. 4 times more rapidly at 25° than at 20°. Failure of imbibition temperatures above 20° to increase dark germination of A. retroflexus seeds is attributed to the rapid thermal reversion of pre-existent PFR. We suggest that the action of prechilling (layering) on many other seed kinds arises in a similar way.  相似文献   

6.
Hilhorst HW 《Plant physiology》1990,94(3):1090-1095
The germination of seeds of Sisymbrium officinale is light- and nitrate dependent. A close interaction between the effects of light and nitrate on germination has been reported previously (HWM Hilhorst, CM Karssen [1988] Plant Physiol 86: 591-597). In this study, a detailed dose-response analysis of the light-induced germination during induction of secondary dormancy is presented. Germination in water dropped from 90 to 0% after a dark incubation of 15°C of approximately 160 hours. In the presence of 25 millimolar KNO3, the decrease in germination level was delayed. At 24-hour intervals fluence-response curves were obtained in the presence of 25 millimolar KNO3. With increasing length of the preincubation period, fluence-response curves shifted along the abscissa to the right. After 120 hours the maximal germination level started to decline. The fluence-response curves were simulated by using formulations from receptor occupancy theory for a simple bimolecular reaction in which the reaction partners were Pfr and its tentative receptor X. A good simulation was obtained when cooperativity of the binding of Pfr to X was assumed. The experimental curve parameters could then be interpreted as binding parameters.  相似文献   

7.
Abstract. Alternating temperatures stimulate the germination of Rumex crispus L. and Rumex obtusifolius L. The optimum period spent at the lower temperature in a diurnal cycle is greater than that spent at the higher temperature. Under most conditions the optimum period at the upper temperatures is about 8 h but, as the upper temperature of a cycle is increased, the optimum period at the upper temperature becomes shorter and more critical. Thus when it is 35°C the optimum period is 2.5–4 h in the light, or about 1 h in the dark. The effect of alternating temperatures is much less in the dark than in the light and in general only extreme alternations with short periods at the higher temperature are effective in the dark. In the light any temperature alternation within the range 1–35°C is effective to at least some extent, providing the temperature difference is 5°C or more and providing the alternation includes one temperature which is above approximately 15°C and one which is below approximately 25°C. The optimum temperature difference is about 15°C. In the light, 4 to 10 cycles saturate the response, but in the dark, where the effect is much less, the response may not be saturated even by 16 cycles. KNO3 at 10−3 M has little effect on the response to alternating temperatures either in the light or the dark. The response to alternating temperature regimes does not appear to vary in quality, i.e., in terms of which particular treatments are best, but it varies in magnitude with site and year of seed collection; and it increases slowly during dry storage, even when stored at a temperature as low as 1.5°C.  相似文献   

8.
Abstract After the onset of imbibition, the dormant seeds of Rumex obtusifolius and R. crispus are stimulated to germinate by a change from an initial low temperature to a warmer temperature for a relatively brief period: the warmer that temperature the shorter is the optimum period spent at it, and this optimum value is unaffected by the initial temperature. The optimum period is more critical in R. crispus than in R. obtusifolius (about 1 h and 2.5 to 4 h, respectively, for a warmer temperature of 35°C in the dark); in the light the length of the period at the warmer temperature is less critical in both species. The sensitivity of the seeds to the change to the warmer temperature increases with time from the start of imbibition at a rate which is positively related to the initial temperature. In R. obtusifolius maximum sensitivity was typically reached after 3 to 5 d when the initial temperature was 20°C and then remained constant, or declined only slightly, over the period investigated (10 d). At the same initial temperature, however, R. crispus showed a cyclical pattern of sensitivity with peaks occurring at 3–4 d intervals from the start of imbibition.  相似文献   

9.
10.
11.
CO(2) Inhibits Respiration in Leaves of Rumex crispus L   总被引:10,自引:7,他引:3       下载免费PDF全文
Curly dock (Rumex crispus L.) was grown from seed in a glasshouse at an ambient CO2 partial pressure of about 35 pascals. Apparent respiration rate (CO2 efflux in the dark) of expanded leaves was then measured at ambient CO2 partial pressure of 5 to 95 pascals. Calculated intercellular CO2 partial pressure was proportional to ambient CO2 partial pressure in these short-term experiments. The CO2 level strongly affected apparent respiration rate: a doubling of the partial pressure of CO2 typically inhibited respiration by 25 to 30%, whereas a decrease in CO2 elicited a corresponding increase in respiration. These responses were readily reversible. A flexible, sensitive regulatory interaction between CO2 (a byproduct of respiration) and some component(s) of heterotrophic metabolism is indicated.  相似文献   

12.
Effects of red (600 to 680 nanometers) and far red (700 to 760 nanometers) irradiances on Amaranthus retroflexus L. seeds indicate that synthesis of phytochrome in the red-absorbing form takes place in water-imbibed nongerminating seeds at 35 C. After 96 hours in darkness, conversion of about 0.10% phytochrome to the far red-absorbing form induces 50% germination. Continuous far red radiation at 35 C with an irradiance of 0.4 × 10−10 Einsteins per square centimeter per second caused photoinactivation of phytochrome about equal to the rate of synthesis. Germination of seeds at 35 C, following far red irradiation adequate to establish the photostationary state, is enhanced by holding at 26 C for 16 minutes. Germination is unaffected relative to controls at constant temperature, if the period at 26 C precedes irradiation. The results indicate a quick response to action of phytochrome in a germination process.  相似文献   

13.
Abstract It is possible to remove the innate dormancy of seeds of Rumex crispus L and Rumex obtusifolius L. by an initial period of low-temperature stratification, providing the seeds are then transferred to a higher temperature. The lower the initial temperature within the range 1.5°-15°C, the greater the germination; there is no stratification effect at 20°C. Although 10°C and 15°C were shown to be suitable for both stratification and for the process of germination itself, neither temperature results in any germination if given constantly: a change from a lower to a higher temperature is essential. The optimum period for stratification depends on two separate processes which occur during the treatment–a rapid loss of innate or primary dormancy and a slower development of induced or secondary dormancy. Within the range 1.5°-15°C the rate of loss of innate dormancy appears to be independent of light and is probably independent of temperature. In contrast, the rate of induction of secondary dormancy increases with increase in temperature, and is more rapid in the dark than the light. The rate of induction of secondary dormancy during stratification is greater in R. crispus than in R. obtusifolius. As a consequence, maximum germination was obtained in both species after stratification at 1.5°C in the light, the optimum period of treatment being about 4 weeks in R. Obtusifolius and 6 weeks in R. crispus, while the maximum germination obtained and the optimal period of stratification decrease in both species with increase in stratification temperature.  相似文献   

14.
Ethephon (Eth), gibberellin A3, A4 + 7 (GA3, GA4 + 7), and 6-benzyladenine (BA) removed secondary dormancy of Amaranthus caudatus seeds. The GAs and BA potentiated the effect of ethephon or 1-aminocyclopropane-1-carboxylic acid (ACC), an ethylene biosynthesis precursor, in terms of the rate or final percent of germination. Aminoethoxyvinylglycine (AVG), an ACC synthase activity inhibitor, was observed to simultaneously inhibit the release from dormancy effected by GA3 or BA as well as the ethylene production stimulated by these regulators. Breaking of secondary dormancy by GA3, GA4 + 7 or BA was prevented by 2,5-norbornadiene (NBD), an inhibitor of ethylene binding. Ethylene completely or markedly reversed the inhibitory effect of NBD. We thus conclude that the removal of secondary dormancy in Amaranthus caudatus seeds by gibberellin or benzyladenine involves ethylene biosynthesis and action.  相似文献   

15.
16.
17.
Traditional healers and ethnoveterinary therapists use several medicinal plants, such as Rumex crispus L., to treat endoparasite infections. R. crispus has been established by researchers to be effective agasint a few parasitic worms. In this study, we evaluated the potency of R. crispus extracts on the model organism, Caenorhabditis elegans and the bioactive compounds of the extracts were also identified. The solvent extracts of R. crispus were tested against C. elegans for up to 72 h. The effect of the extracts on C. elegans was examined using light microscopy (LM) and scanning electron microscopy (SEM). LM and SEM analysis showed damage on the body wall, reduced body and slight modifications of the nematode organs. The lethality test reveals a significant reduction in the viability of the nematode with the water extract of leaf (LF-WAE), among others, having the strongest potency against the nematode, with 83% lethality. Anlysis done with Fourier-transform infrared spectroscopy (FTIR) spectra reveals various characteristic vibration bands and fingerprint bands at 3400–600 cm−1, identifying phenols, organic acids, aromatics, amines, among others in the plant. The compounds were identified with liquid chromatography-mass spectrometry (LC-MS), under the categories of flavonoids, steroidal alkaloids and proanthocyanidin. In conclusion, this study confirmed that R. crispus has anthelmintic potential, using standardised C. elegans models as a tool and suggests that there could be novel compounds yet to be explored in the studied plant that could be of great benefit to livestock and humans.Keyword: Caenorhabditis elegans, Gastrointestinal infections, Anthelmintic drug, Bioactive compounds, Phytochemical, Ethnoveterinary therapists  相似文献   

18.
The influence of phytochrome on endosperm softening and cellulaseactivity was studied on light-stimulated Datura ferox seeds.Endosperm softening preceded the earliest signs of radicle protrusion,and there was good correlation between the % of seeds with softendosperm at 48 h after R and germination at 96 h after R. Cellulaseactivity was stimulated by R and the increase in activity preceded,by more than 24h, radicle protrusion and endosperm softening.The effect of R was reversed by FR, but, by delaying the irradiationwith FR until cellulase activity had increased significantly,it was observed that removing Pfr did more than just stop anyfurther increase, the level of cellulase activity decreasedin about 24 h close to the dark controls. Cellulase activitywas decreased by a FR irradiation even when more than 60% germinationhad escaped from reversion. These results indicate that phytochromeinfluence on cellulase is not an indirect consequence of thestimulus of germination and that the continuous presence ofPfr is required for the cellulase activity to remain high. Thepossibility that cellulase and other degrading enzymes may bepart of the mechanism of light-induced germination is discussed. Key words: Phytochrome, germination, cellulase  相似文献   

19.
蔷薇种子的休眠及解除方法   总被引:3,自引:0,他引:3  
分析了蔷薇(Rosa L.)种子休眠原因、解除休眠方法以及环境条件对休眠与萌发的影响.蔷薇种子休眠的主要原因有瘦果果皮和种皮的限制作用,胚生理休眠以及果肉、瘦果果皮、种皮和胚中的抑制物质.解除休眠的方法包括去除瘦果果皮限制、解除胚的生理休眠、去除抑制物质等.种子发育过程中及成熟后,环境因子,如温度、水分和光照,对种子休眠和萌发有影响.此外,微生物、果实采集时间也对种子休眠及萌发有较大影响.蔷薇种子的休眠机制复杂,且种间差异很大.  相似文献   

20.
Factors controlling the establishment and removal of secondary dormancy in Chenopodium bonus-henricus L. seeds were investigated. Unchilled seeds required light for germination. A moist-chilling treatment at 4 C for 28 to 30 days removed this primary dormancy. Chilled seeds now germinated in the dark. When chilled seeds were held in the dark in −8.6 bars polyethylene glycol 6000 solution at 15 C or in water at 29 C a secondary dormancy was induced which increased progressively with time as determined by subsequent germination. These seeds now failed to germinate under the condition (darkness) which previously allowed their germination. Continuous light or daily brief red light irradiations during prolonged imbibition in polyethylene glycol solution at 15 C or in water at 29 C prevented the establishment of the secondary dormancy and caused an advancement of subsequent germination. Far red irradiations immediately following red irradiation reestablished the secondary dormancy indicating phytochrome participation in “pregerminative” processes. The growth regulator combination, kinetin + ethephon + gibberellin A4+A7 (GA4+7), and to a relatively lesser extent GA4+7, was effective in preventing the establishment of the secondary dormancy and in advancing the germination or emergence time. Following the establishment of the secondary dormancy by osmotic or high temperature treatments the regulator combination was relatively more active than light or GA4+7 in removing the dormancy. Prolonged dark treatment at 29 C seemed to induce changes that were partially independent of light or GA4+7 control. The data presented here indicate that changes during germination preventing dark treatment determine whether the seed will germinate, show an advancement effect, or will become secondarily dormant. These changes appear to be modulated by light and hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号