首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel raw starch degrading α-cyclodextrin glycosyltransferase (CGTase; E.C. 2.4.1.19), produced by Klebsiella pneumoniae AS-22, was purified to homogeneity by ultrafiltration, affinity and gel filtration chromatography. The specific cyclization activity of the pure enzyme preparation was 523 U/mg of protein. No hydrolysis activity was detected when soluble starch was used as the substrate. The molecular weight of the pure protein was estimated to be 75 kDa with SDS-PAGE and gel filtration. The isoelectric point of the pure enzyme was 7.3. The enzyme was most active in the pH range 5.5–9.0 whereas it was most stable in the pH range 6–9. The CGTase was most active in the temperature range 35–50°C. This CGTase is inherently temperature labile and rapidly loses activity above 30°C. However, presence of soluble starch and calcium chloride improved the temperature stability of the enzyme up to 40°C. In presence of 30% (v/v) glycerol, this enzyme was almost 100% stable at 30°C for a month. The Km and kcat values for the pure enzyme were 1.35 mg ml−1 and 249 μM mg−1 min−1, respectively, with soluble starch as the substrate. The enzyme predominantly produced α-cyclodextrin without addition of any complexing agents. The conditions employed for maximum α-cyclodextrin production were 100 g l−1 gelatinized soluble starch or 125 g l−1 raw wheat starch at an enzyme concentration of 10 U g−1 of starch. The α:β:γ-cyclodextrins were produced in the ratios of 81:12:7 and 89:9:2 from gelatinized soluble starch and raw wheat starch, respectively.  相似文献   

2.
Aspergillus flavus produced approximately 50 U/mL of amylolytic activity when grown in liquid medium with raw low-grade tapioca starch as substrate. Electrophoretic analysis of the culture filtrate showed the presence of only one amylolytic enzyme, identified as an α-amylase as evidenced by (i) rapid loss of color in iodine-stained starch and (ii) production of a mixture of glucose, maltose, maltotriose and maltotetraose as starch digestion products. The enzyme was purified by ammonium sulfate precipitation and ion-exchange chromatography and was found to be homogeneous on sodium dodecyl sulfate— polyacrylamide gel electrophoresis. The purified enzyme had a molar mass of 52.5±2.5 kDa with an isoelectric point at pH 3.5. The enzyme was found to have maximum activity at pH 6.0 and was stable in a pH range from 5.0 to 8.5. The optimum temperature for the enzyme was 55°C and it was stable for 1 h up to 50°C. TheK m andV for gelatinized tapioca starch were 0.5 g/L and 108.67 μmol reducing sugars per mg protein per min, respectively.  相似文献   

3.
The extremely thermophilic archaeon Thermococcus hydrothermalis, isolated from a deep-sea hydrothermal vent in the East Pacific Rise at 21°N, produced an extracellular pullulanase. This enzyme was purified 97-fold to homogeneity from cell-free culture supernatant. The purified pullulanase was composed of a single polypeptide chain having an estimated molecular mass of 110 kDa (gel filtration) or 128 kDa (sodium dodecyl sulfate/polyacryl amide gel electrophoresis). The enzyme showed optimum activity at pH 5.5 and 95 °C. The thermostability and the thermoactivity were considerably increased in the presence of Ca2+. The enzyme was activated by 2-mercaptoethanol and dithiothreitol, whereas N-bromosuccinimide and α-cyclodextrin were inhibitors. This enzyme was able to hydrolyze, in addition to the α-1,6-glucosidic linkages in pullulan, α-1,4-glucosidic linkages in amylose and soluble starch, and can therefore be classified as a type II pullulanase or an amylopullulanase. The purified enzyme displayed Michaelis constant (K m) values of 0.95 mg/ml for pullulan and 3.55 mg/ml for soluble starch without calcium and, in the presence of Ca2+, 0.25 mg/ml for pullulan and 1.45 mg/ml for soluble starch. Received: 19 November 1997 / Received revision: 9 March 1998 / Accepted: 14 March 1998  相似文献   

4.
Streptomyces avermitilis CECT 3339 produces extracellular ferulic acid esterase (FAE) activity during growth on a range of lignocellulose substrates. Maximal levels of FAE activity were detected in culture filtrates from S. avermitilis CECT 3339 grown in media containing wheat bran and yeast extract as carbon and nitrogen sources respectively. Biochemical characterization of this enzyme activity revealed that it was 100-fold higher when wheat bran was pretreated with Celluclast (a mix of hydrolytic enzymes). FAE was found to be end-product-inhibited. Characterization of the properties of the enzyme showed that FAE exhibited an activity optimum pH at 6 with pH stability between pH 6 and 8. The optimum temperature was 50 °C while the temperature stability was between 30 °C and 40 °C, with rapid inactivation at 60 °C and above. The characteristics and stability of FAE from S. avermitilis CECT 3339 suggest a potential role for this enzyme in combination with endoxylanases for the upgrading of plant-residue silage and for biopulping. Received: 17 November 1997 / Received revision: 13 March 1998 / Accepted: 13 April 1998  相似文献   

5.
A UV-induced mutant strain of Aspergillus niger (CFTRI-1105-U9) overproduced a starch-hydrolysing enzyme with properties characteristically different from the known amylases of the fungus. The purified enzyme of 4.0 pI had an apparent molecular mass of 125 kDa and it dextrinised starch and then saccharified the dextrins. Patterns of the enzyme activity on starch, resulting in glucose at 60 °C and glucose, maltose and maltodextrins at 70 °C as primary products, suggested significant applications for the enzyme in starch-processing industries. Received: 29 October 1998 / Received revision: 11 January 1999 / Accepted: 19 January 1999  相似文献   

6.
The amylopullulanse produced by Bacillus sp. DSM 405 was purified to homogeneity. It exhibited dual activity, cleaving the α1-4 bonds in starch, releasing a range of malto-oligosaccharides, and also cleaving the α1-6 bonds in pullulan, releasing maltotriose as the sole end-product. The enzyme was a glycoprotein and had a relative molecular mass of 126 000 and an isoelectric point of 4.3. While the enzyme was optimally active on starch at pH 6.5 and at pH 6.0 on pullulan, activity on both substrates was maximal at 70 °C. Kinetic analyses of the enzyme in a system that contained both starch and pullulan as two competing substrates demonstrated the dual specificity of the enzyme. Chemical modification of the carboxyl groups within the active centre of the protein showed that one active site was responsible for hydrolysis of the α1-4 and α1-6 bonds in starch and pullulan respectively. This is the first comprehensive investigation of an amylopullulanse produced by an aerobic bacterium, showing a single active site responsible for both activities. Received: 3 August 1998 / Received revision: 13 October 1998 / Accepted: 16 October 1998  相似文献   

7.
The cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19) gene from Bacillus sp. G1 was successfully isolated and cloned into Escherichia coli. Analysis of the nucleotide sequence revealed the presence of an open reading frame of 2,109 bp and encoded a 674 amino acid protein. Purified CGTase exhibited a molecular weight of 75 kDa and had optimum activity at pH 6 and 60°C. Heterologous recombinant protein expression in E. coli is commonly problematic causing intracellular localization and formation of inactive inclusion bodies. This paper shows that the majority of CGTase was secreted into the medium due to the signal peptide of Bacillus sp. G1 that also works well in E. coli, leading to easier purification steps. When reacted with starch, CGTase G1 produced 90% β-cyclodextrin (CD) and 10% γ-CD. This enzyme also preferred the economical tapioca starch as a substrate, based on kinetics studies. Therefore, CGTase G1 could potentially serve as an industrial enzyme for the production of β-CD.  相似文献   

8.
Ethanol-precipitated substances after fermentation of various agro-industrial wastes by Aureobasidium pullulans were examined for their pullulan content. Grape skin pulp extract, starch waste, olive oil waste effluents and molasses served as substrates for the fermentation. A glucose-based defined medium was used for comparison purposes. Samples were analysed by an enzyme-coupled assay method and by high-performance anion-exchange chromatography with pulsed amperometric detection after enzymic hydrolysis with pullulanase. Fermentation of grape skin pulp extract gave 22.3 g l−1 ethanol precipitate, which was relatively pure pullulan (97.4% w/w) as assessed by the coupled-enzyme assay. Hydrolysed starch gave only 12.9 g l−1 ethanol precipitate, which increased to 30.8 g l−1 when the medium was supplemented with NH4NO3 and K2HPO4; this again was relatively pure pullulan (88.6% w/w). Molasses and olive oil wastes produced heterogeneous ethanol-precipitated substances containing small amounts of pullulan, even when supplemented with nitrogen and phosphate. Overall, grape skin pulp should be considered as the best substrate for pullulan production. Starch waste requires several hydrolyis steps to provide a usable carbon source, which reduces its economic attraction as an industrial process. Received: 24 October 1997 / Received revision: 10 February 1998 / Accepted: 15 February 1998  相似文献   

9.
The gene celA, encoding an endoglucanase from the strain Bacillus sp. BP-23, was cloned and expressed in Escherichia coli. The nucleotide sequence of a 1867-bp DNA fragment containing the celA gene was determined, revealing an open reading frame of 1200 nucleotides that encodes a protein of 44 803 Da. The deduced amino acid sequence of the encoded enzyme shows high homology to those of enzymes belonging to subtype 4 of the family-A cellulases. The celA gene product synthesized in E. coli showed activity on carboxymethylcellulose and lichenan but no activity was found on Avicel. Activity was enhanced in the presence of 10 mM Mg2+ and Ca2+ and showed its maximum at 40 °C and pH 4.0. Study of the performance of CelA on paper manufacture from agricultural fibres showed that treatment with the enzyme improved the properties of the pulp and the quality of paper. CelA treatment enhanced the physical properties (stretch and tensile index) of paper from wheat straw, while dewatering properties were slightly diminished. Electron-microscope analysis showed that the surface of straw fibres was modified by CelA. Received: 11 February 1998 / Received revision: 20 March 1998 / Accepted: 20 March 1998  相似文献   

10.
A hydrocarbon mixture containing p-xylene, naphthalene, Br-naphthalene and straight aliphatic hydrocarbons (C14 to C17) was aerobically degraded without lag phase by a natural uncontaminated potting soil at 20 °C and 6 °C. Starting concentrations were approximately 46 ppm for the aromatic and 13 ppm for the aliphatic compounds. All aliphatic hydrocarbons were degraded within 5 days at 20 °C, to levels below detection (ppb levels) but only down to 10% of initial concentration at 6 °C. Naphthalene was degraded within 12 days at 20 °C and unaffected at 6 °C. At 20 °C p-xylene was degraded within 20 days, but no degradation occurred at 6 °C. Br-naphthalene was only removed down to 30% of initial concentration at 20 °C, with no significant effect at 6 °C. The biodegradation was monitored with head space solid-phase microextraction and gas chromatography–mass spectrometry. Received: 5 October 1998 / Received revision: 4 December 1998 / Accepted: 5 December 1998  相似文献   

11.
Protease activity was detected in the culture medium of Flavobacterium balustinum P104 grown at 10 °C, which was isolated from salmon (Oncorhynchus keta) intestine. The enzyme, designated as CP-70 protease, was purified to homogeneity from the culture broth by ion exchange and gel filtration chromatographyies. The molecular mass of the protease was 70 kDa, and its isoelectric point was close to 3.5. Maximal activity toward azocasein was observed at 40 °C and from pH 7.0 to 9.0. The activity was strongly inhibited by phenylmethylsulfonyl fluoride, suggesting that the enzyme is a serine protease. The n-terminal amino acid sequence was Asp-Thr-Arg-Gln-Leu-Leu-Asn-Ala-Asn-Ser-Asp-Leu-Leu-Asn-Thr-Thr-Gly-Asn-Val-Thr-Gly-Leu-Thr-Gly-Ala-Phe-Asn-Gly-Glu-Asn. A search through the database for sequence homology yielded no significant match. The initial cleavage sites for oxidized insulin B-chain were found to be the Glu13-Ala14 and Phe24-Phe25 bonds. The result of the cleavage pattern of oxidized insulin B-chain suggests that CP-70 protease has a broader specificity than the other cold-active proteases against the peptide substrate. Received: 17 April 1998 / Received last revision: 17 June 1998 / Accepted: 10 July 1998  相似文献   

12.
 Fourier transform infrared (FTIR) spectroscopy is used to compare the thermally induced conformational changes in horse, bovine and tuna ferricytochromes c in 50 mM phosphate/0.2 M KCl. Thermal titration in D2O at pD 7.0 of the amide II intensity of the buried peptide NH protons reveals tertiary structural transitions at 54  °C in horse and at 57  °C in bovine c. These transitions, which occur well before loss of secondary structure, are associated with the alkaline isomerization involving Met80 heme-ligand exchange. In tuna c, the amide-II-monitored alkaline isomerization occurs at 35  °C, followed by a second amide II transition at 50  °C revealing a hitherto unreported conformational change in this cytochrome. Amide II transitions at 50  °C (tuna) and 54  °C (horse) are also observed during the thermal titration of the CN-ligated cytochromes (where CN displaces the Met80 ligand), but a well-defined 35  °C amide II transition is absent from the titration curve of the CNadduct of tuna c. The different mechanisms suggested by the FTIR data for the alkaline isomerization of tuna and the mammalian cytochromes c are discussed. After the alkaline isomerization, loss of secondary structure and protein aggregation occur within a 5  °C range with T m values at 74  °C (bovine c), 70  °C (horse c) and 65  °C (tuna c), as monitored by changes in the amide I′ bands. The FTIR spectra were also used to compare the secondary structures of the ferricytochromes c at 25  °C. Curve fitting of the amide I (H2O) and amide I′ (D2O) bands reveals essentially identical secondary structure in horse and bovine c, whereas splitting of the α-helical absorption of tuna c indicates the presence of less-stable helical structures. CN adduct formation results in no FTIR-detectable changes in the secondary structures of either tuna or horse c, indicating that Met80 ligation does not influence the secondary structural elements in these cytochromes. The data provided here demonstrate for the first time that the selective thermal titration of the amide II intensity of buried peptide NH protons in D2O is a powerful tool in protein conformational analysis. Received: 1 April 1999 / Accepted: 24 August 1999  相似文献   

13.
A novel mutant enzyme namely H43T CGTase can produce up to 39% γ-cyclodextrin (γ-CD) compared to the native enzyme which produces only 10% γ-CD. The effect of the reaction conditions on γ-CD production was studied using this mutant CGTase. The effects of substrate–buffer combination, starch pretreatment and concentration, pH, additives and finally the use of a debranching enzyme improved the γ-CD ratio further. The tapioca–acetate pair gave the highest conversion (16% conversion) among four types of starch and four buffer system combinations. Gelatinized starch was preferred compared to raw tapioca starch in producing a high percentage of γ-CD and conversion rate. Higher pH especially pH 8–9 led to a higher proportion of γ-CD, and was relatively more apparent when the concentration of starch was increased. Forty-six percent γ-CD was produced using 2.5% gelatinized tapioca starch at pH 8. Pullulanase enzyme was found to be useful in reducing the viscosity of tapioca starch paste thus increasing the efficiency of utilization of starch by CGTase by at least 20- to 30-fold. Up to 48% γ-CD can be produced when 4% pullulanase-pretreated tapioca starch was reacted with the CGTase mutant. It was also found that the supplementation of the reaction mixture with glucose, toluene, or cyclododecanone improved the γ-CD yield by 42.2, 46.4, 43.4, and 43.4%, respectively. All the parameters involved have been shown to affect the product specificity of the mutant H43T CGTase transglycosylation mechanism.  相似文献   

14.
A gram-negative, rod-shaped bacterium capable of utilizing l-asparagine as its sole source of carbon and nitrogen was isolated from soil and identified as Enterobacter cloacae. An intracellularly expressed l-asparaginase was detected and it deaminated l-asparagine to aspartic acid and ammonia. High-pressure liquid chromatography analysis of a cell-free asparaginase reaction mixture indicated that 2.8 mM l-asparagine was hydrolyzed to 2.2 and 2.8 mM aspartic acid and ammonia, respectively, within 20 min of incubation. High asparaginase activity was found in cells cultured on l-fructose, d-galactose, saccharose, or maltose, and in cells cultured on l-asparagine as the sole nitrogen source. The pH and temperature optimum of l-asparaginase was 8.5 and 37–42 °C, respectively. The half-life of the enzyme at 30 °C and 37 °C was 10 and 8 h, respectively. Received: 19 February 1998 / Received last revision: 4 June 1998 / Accepted: 10 July 1998  相似文献   

15.
 The expression of the Arabidopsis heat shock protein (HSP) 18.2 promoter-β-d-glucuronidase (GUS) chimera gene was investigated in transgenic Nicotiana plumbaginifolia plants during the recovery phase at normal temperatures (20–22  °C) after a heat shock (HS) treatment. GUS activity increased during the recovery phase after HS at 42  °C for 2 h, and maximal GUS activity was observed after 12 h at normal temperatures, at levels 50–100 times higher than the activity immediately after HS. After HS at 44  °C, little GUS activity was observed during the first 20–24 h at normal temperatures, but the activity increased gradually thereafter, to reach a maximum at 40–50 h. After HS at 45  °C, no GUS activity was observed throughout the experimental period. RT-PCR analysis showed that GUS mRNA remained for 10 h after a 2-h HS at 42  °C and for 40 h after a 2-h HS at 44  °C. These findings demonstrate that brief HS treatment, especially at a sublethal temperature, induces a long-term accumulation of HSP-GUS mRNA during the recovery phase. Received: 31 July 1998 / Revision received: 4 November 1998 / Accepted: 19 February 1999  相似文献   

16.
The production of feruloyl esterase activity by Bacillus spp. and lactobacilli can be detected in an agar-plate assay. The assay involves the substitution of the main carbon source in specific agar with ethyl ferulate. A number of Bacillus spp., predominantly B. subtilis strains, were found to exhibit feruloyl esterase activity by this method. Of the examined lactobacilli, Lb. fermentum (NCFB 1751) showed the highest level of ferulic acid esterase activity. The enzyme was released from harvested cells by sonication and showed pH and temperature optima of 6.5 and 30 °C respectively. Received: 2 February 1998 / Received revision: 20 April 1998 / Accepted: 27 April 1998  相似文献   

17.
Red algae (Rhodophyceae) are photosynthetic eukaryotes that accumulate starch granules in the cytosol. Starch synthase activity in crude extracts of Gracilaria tenuistipitata Chang et Xia was almost 9-fold higher with UDP[U-14C]glucose than with ADP[U-14C]glucose. The activity with UDP[U-14C]glucose was sensitive to proteolytic and oxidative inhibition during extraction whilst the activity with ADP[U-14C]glucose appeared unaffected. This indicates the presence of separate starch synthases with different substrate specificities in G. tenuistipitata. The UDPglucose: starch synthase was purified and characterised. The enzyme appears to be a homotetramer with a native Mr of 580 kDa and displays kinetic properties similar to other α-glucan synthases such as stimulation by citrate, product (UDP) inhibition and broad primer specificity. We propose that this enzyme is involved in cytosolic starch synthesis in red algae and thus is the first starch synthase described that utilises UDPglucose in vivo. The biochemical implications of the different compartmentalisation of starch synthesis in red algae and green algae/plants are also discussed. Received: 29 January 1999 / Accepted: 11 March 1999  相似文献   

18.
This is the first report describing the gene structure and the enzymatic properties of a β-fructosidase of a hyperthermophilic organism. The bfrA gene of the ancestral bacterium Thermotoga maritima MSB8 codes for a 432-residue, polypeptide of about 50 kDa, with significant sequence similarity to other β-fructosidases. On the basis of its primary structure, BfrA can be assigned to glycosyl hydrolase family 32. The bfrA gene was expressed in Escherichia coli and the recombinant enzyme was purified and characterised. BfrA was specific for the fructose moiety and the β-anomeric configuration of the glycosidic linkages of its substrates. The enzyme released fructose from sucrose and raffinose, and the fructose polymer inulin was hydrolysed quantitatively in an exo-type fashion. BfrA displayed similar catalytic efficiencies for the hydrolysis of sucrose and inulin with k cat/K m values (at 75 °C, pH 5.5) of about 4.1 × 104 M−1s−1 and 3.1 × 104 M−1s−1 respectively. BfrA had an optimum temperature of 90–95 °C (10-min assay) and was extremely insensitive to thermo-inactivation. During 5 h at temperatures up to 80 °C at pH 7, the enzyme retained at least 85% of its initial activity. Thus, BfrA is the most thermostable β-fructosidase and also the most thermostable inulinase described to date. In conclusion, the T. maritima enzyme can be classified as an exo-β-d-fructofuranosidase (EC 3.2.1.26) with invertase and inulinase activity. Its catalytic properties along with the extreme thermostability recommend it for use in biotechnology. Received: 28 August 1997 / Received revision: 19 January 1998 / Accepted: 24 January 1998  相似文献   

19.
An arabinofuranohydrolase (AXH-d3) was purified from a cell-free extract of Bifidobacterium adolescentis DSM 20083. The enzyme had a molecular mass of approximately 100 kDa as determined by gel filtration. It displayed maximum activity at pH 6 and 30 °C. Using an arabinoxylan-derived oligosaccharide containing double-substituted xylopyranosyl residues established that the enzyme specifically released terminal arabinofuranosyl residues linked to C-3 of double-substituted xylopyranosyl residues. In addition, this arabinofuranohydrolase released arabinosyl groups from wheat flour arabinoxylan polymer but showed no activity towards p-nitrophenyl α-l-arabinofuranoside or towards sugar-beet arabinan, soy arabinogalactan, arabino-oligosaccharides and arabinogalacto-oligosaccharides. Received: 15 July 1996 / Received revision: 18 October 1996 / Accepted: 18 October 1996  相似文献   

20.
bstract The use of the insoluble polysaccharides Avicel and oat-spelt xylan for the binding and subsequent purification of active xylanases from Streptomyces chattanoogensis was investigated. Maximum recovery of xylanases was achieved with oat-spelt xylan, using NaCl (2 M) to remove active protein. The application of this technique to the purification of xylanases resulted in the purification of an endoxylanase (CM-2) with high specific activity (729.5 U mg−1). The properties of the purified enzyme, exhibiting activity and stability between 40 °C and 60 °C and between pH 5 and 8, suggest a potential role for both the enzyme and the rapid purification protocol in the removal of hemicelluloses from kraft pulp prior to bleaching. Received: 6 April 1998 / Accepted: 8 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号