首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amitriptyline, the most widely used tricyclic antidepressant, has been associated with very rare but severe incidences of hepatotoxicity in patients. While the mechanism of idiosyncratic hepatotoxicity remains unknown, it is proposed that metabolic activation of amitriptyline and subsequent covalently binding of reactive metabolites to cellular proteins play a causative role. Studies were initiated to determine whether amitriptyline undergoes cytochrome P450 (P450)-mediated bioactivation in human liver microsomes to electrophilic intermediates. LC/MS/MS analysis of incubations containing amitriptyline and NADPH-supplemented microsomes in the presence of glutathione (GSH) revealed the formation of GSH conjugates derived from the addition of the sulfydryl nucleophile to hydrated metabolites of amitriptyline and nortriptyline, the major N-dealkylated metabolite of amitriptyline. Formation of GSH conjugates was primarily catalyzed by heterologously expressed recombinant CYP2D6, CYP3A4, CYP3A5, and to a less extent, CYP1A2. Corresponding dihydrodiol metabolites of amitriptyline and nortriptyline were also detected by tandem mass spectrometry. These findings are consistent with a bioactivation sequence involving initial P450-catalyzed oxidation of the aromatic nucleus in amitriptyline to an electrophilic arene oxide intermediate, which is subsequently attacked by glutathione and water yielding the sulfydryl conjugate and the dihydrodiol metabolite, respectively. The results from the current investigation constitute the first report on the cytochrome P450-catalyzed bioactivation of the antidepressants amitriptyline and nortriptyline. It is proposed that the arene oxide intermediate(s) may represent a rate-limiting step in the initiation of amitriptyline and nortriptyline-mediated hepatotoxicity.  相似文献   

2.
The phenothiazine-derived antipsychotics, namely chlorpromazine and thioridazine, have been associated with very rare but severe incidences of hepatotoxicity in patients. While the mechanism of idiosyncratic hepatotoxicity remains unknown, it is possible that metabolic activation and subsequent covalently binding of reactive metabolites to cellular proteins play a causative role. Studies were initiated to determine whether chlorpromazine and thioridazine undergo cytochrome P450 (P450)-mediated bioactivation in human liver microsomes to electrophilic intermediates. LC/MS/MS analysis of incubations containing chlorpromazine or thioridazine in the presence of NADPH and glutathione (GSH) revealed the formation of GSH conjugates derived from the addition of the sulfydryl nucleophile to monohydroxy metabolites of chlorpromazine and thioridazine, respectively. Formation of reactive intermediates of chlorpromazine and thioridazine was primarily mediated by heterologously expressed recombinant CYP2D6, and to a less extent, CYP1A2. The 7-hydroxyl metabolites of chlorpromazine and thioridazine were also detected by tandem mass spectrometry. A tentative pathway states that after initial 7-hydroxylation, a bioactivation sequence involves P450-catalyzed oxidation of the phenothiazine core to an electrophilic quinone imine intermediate, which is subsequently attacked by glutathione yielding the sulfydryl conjugates. The results from the current investigation constitute the first report on the cytochrome P450-catalyzed bioactivation of the phenothiazine antipsychotics chlorpromazine and thioridazine.  相似文献   

3.
The metabolism of N-methyl substituted 7H-dibenzo[c,g]carbazole (N-Me DBC) was investigated in vitro using liver microsomes from 3-methylcholanthrene (MC)-, benzo[c]carbazole (BC) and Arochlor-pretreated mice and rats. N-Me DBC is a potent sarcomatogen devoid of hepatotoxicity and liver carcinogenic activity. The ethyl acetate-extractable metabolites were separated by high performance liquid chromatography (HPLC) and most of them were identified by proton magnetic resonance (PMR), mass spectrometry (MS) and comparison with synthetically prepared specimens. Mouse and rat microsomes gave rise to the same metabolites. The major metabolites were 5-OH-N-Me DBC (50%), N-hydroxymethyl (HMe) DBC (25-30%) and 3-OH-N-Me DBC (10%). Addition of 1,1,1-trichloropropene-2,3-oxide (TCPO) to the standard incubation medium permitted the identification of two dihydrodiols among the minor metabolites. No metabolite of DBC was observed after incubation of N-Me DBC, or its major metabolite N-HMe DBC, with either mouse or rat microsomes, but the possibility of a slight demethylation cannot be totally excluded. The lack of biotransformation at the nitrogen atom site may explain the lack of hepatotoxicity and liver carcinogenic activity of N-Me DBC. The modulation of metabolism by epoxide hydrolase, cytosol and glutathione was also investigated. The results are discussed in the light of data previously obtained with hepatotoxic and hepatocarcinogenic DBC.  相似文献   

4.
Recent studies indicate that trichloroethylene (TCE) may be a male reproductive toxicant. It is metabolized by conjugation with glutathione and cytochrome p450-dependent oxidation. Reactive metabolites produced along both pathways are capable of forming protein adducts and are thought to be involved in TCE-induced liver and kidney damage. Similarly, in situ bioactivation of TCE and subsequent binding of metabolites may be one mechanism by which TCE acts as a reproductive toxicant. Cysteine-conjugate beta-lyase (beta-lyase) bioactivates the TCE metabolite dichlorovinyl cysteine (DCVC) to a reactive intermediate that is capable of binding cellular macromolecules. In the present study, Western blot analysis indicated that the soluble form of beta-lyase, but not the mitochondrial form, was present in the epididymis and efferent ducts. Both forms of beta-lyase were detected in the kidney. When rats were dosed with DCVC, no protein adducts were detected in the epididymis or efferent ducts, although adducts were present in the proximal tubule of the kidney. Trichloroethylene can also be metabolized and form protein adducts through a cytochrome p450-mediated pathway. Western blot analysis detected the presence of cytochrome p450 2E1 (CYP2E1) in the efferent ducts. Immunoreactive proteins were localized to efferent duct and corpus epididymis epithelia. Metabolism of TCE was demonstrated in vitro using microsomes prepared from untreated rats. Metabolism was inhibited 77% when efferent duct microsomes were preincubated with an antibody to CYP2E1. Dichloroacetyl adducts were detected in epididymal and efferent duct microsomes exposed in vitro to TCE. Results from the present study indicate that the cytochrome p450-dependent formation of reactive intermediates and the subsequent covalent binding of cellular proteins may be involved in the male reproductive toxicity of TCE.  相似文献   

5.
6.
The presence of high levels, as well as tissue-specific forms, of cytochrome P450 enzymes in mammalian olfactory mucosa (OM) has important implications in the bioactivation and toxicity of xenobiotics entering the tissue. Previous studies have shown that coumarin, a known olfactory toxicant in rats, is bioactivated by OM microsomal P450s to a number of products, presumably via coumarin-3,4-epoxide and other epoxide intermediates. The aim of the current study was to obtain direct evidence for the formation of such reactive intermediates in rat OM through the detection of protein covalent binding and glutathione (GSH) adduct formation. Protein covalent binding experiments with [14C]coumarin (10 μM) displayed a 7–9-fold higher NADPH-dependent radioactivity binding in rat OM microsomes (2.5 nmol/mg/30 min) compared to those in rat and human liver microsomes; the binding value in rat OM microsomes was substantially but not completely reduced by the addition of GSH (5 mM). LC/MS analyses detected a number of GSH adducts in GSH-supplemented coumarin metabolism reaction in rat OM microsomes; 3-glutathionyl coumarin was found to be the major one, indicating 3,4-epoxidation as the main bioactivation pathway. Additional GSH adducts were identified, presumably forming via the same pathway or epoxidation on the benzene moiety. Our findings provide direct evidence for the formation of multiple coumarin reactive intermediates in rat OM, leading to protein covalent binding and GSH conjugation.  相似文献   

7.
Bazedoxifene is a selective estrogen receptor modulator (SERM) that has been developed for use in post-menopausal osteoporosis. However, it contains a potentially toxic 5-hydroxy-3-methylindole moiety. Previous studies on the 5-hydroxyindole and the 3-alkylindole-containing drugs indometacine, zafirlukast and MK-0524 structural analogs have shown that they are bioactivated by cytochrome P450s through a dehydrogenation process to form quinoneimine or 3-methyleneindolenine electrophilic species. In the present study, bazedoxifene was synthesized and then evaluated, together with raloxifene and 2-(4-hydroxyphenyl)-3-methyl-1H-indol-5-ol (13), a 3-methyl-5-hydroxyindole-based structural fragment of bazedoxifene, for its ability to form reactive electrophilic species when incubated with human liver microsomes (HLMs) or recombinant CYP isozymes. We showed that bazedoxifene was bioactivated only in trace amounts with recombinant CYP isozymes. In contrast, the N-dealkylated fragment of bazedoxifene (2-(4-hydroxyphenyl)-3-methyl-1H-indol-5-ol) was bioactivated in considerable amounts to an electrophilic intermediate, which was trapped with glutathione and identified by LC-MS/MS. This suggests that bazedoxifene would require initial N-dealkylation, which could subsequently lead to the formation of the reactive intermediate. However, such an N-dealkylated metabolite of bazedoxifene was not detected after the incubation of bazedoxifene in HLM or recombinant CYP isozymes.  相似文献   

8.
In vitro evaluation of a toxic metabolite of sulfadiazine   总被引:7,自引:0,他引:7  
We have demonstrated the in vitro production of a potentially toxic metabolite of sulfadiazine Human lymphocytes were incubated with sulfadiazine and a murine hepatic microsomal drug metabolizing system. Toxicity to cells was assessed by trypan blue dye exclusion. Covalent binding of labelled sulfadiazine to microsomes also was studied. Sulfadiazine toxicity to cells was dependent on microsomes and NADPH. Binding and toxicity were decreased when microsomes were boiled or cytochrome P-450 inhibited, and by the addition of N-acetylcysteine or glutathione. The data suggest the production of a toxic intermediate of oxidative metabolism of sulfadiazine which is detoxified by conjugation with glutathione. Covalent binding of such metabolites to cell macromolecules could lead to cell death and, by acting as haptens, to secondary hypersensitivity reactions.  相似文献   

9.
It has been reported that the bioactive intermediate metabolites of trazodone might cause hepatotoxicity. This study was designed to investigate the exact mechanism of hepatocellular injury induced by trazodone as well as the protective effects of taurine and/or melatonin against this toxicity. Freshly isolated rat hepatocytes were used. Trazodone was cytotoxic and caused cell death with LC50 of 300 µm within 2 h. Trazodone caused an increase in reactive oxygen species (ROS) formation, malondialdehyde accumulation, depletion of intracellular reduced glutathione (GSH), rise of oxidized glutathione disulfide (GSSG), and a decrease in mitochondrial membrane potential, which confirms the role of oxidative stress in trazodone‐induced cytotoxicity. Preincubation of hepatocytes with taurine prevented ROS formation, lipid peroxidation, depletion of intracellular reduced GSH, and increase of oxidized GSSG. Taurine could also protect mitochondria against trazodone‐induced toxicity. Administration of melatonin reduced the toxic effects of trazodone in isolated rat hepatocytes. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:457‐462, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21509  相似文献   

10.
There have been increasing reports on the adverse reactions associated with herbal consumption. For many of these adverse reactions, the underlying biochemical mechanisms are unknown, but bioactivation of herbal compounds to generate reactive intermediates have been implicated. This minireview updates our knowledge on metabolic activation of herbal compounds, molecular targets and the toxicity relevance. A number of studies have documented that some herbal compounds can be converted to toxic or even carcinogenic metabolites by Phase I [e.g. cytochrome P450s (CYPs)] and less frequently by Phase II enzymes. For example, aristolochic acids (AAs) in Aristolochia spp, which undergo reduction of the nitro group by hepatic CYP1A1/2 or peroxidases in extrahepatic tissues to generate highly reactive cyclic nitrenium ions. The latter can react with macromolecules (DNA and protein), resulting in activation of H-ras and myc oncogenes and gene mutation in renal cells and finally carcinogenesis of the kidneys. Teucrin A and teuchamaedryn A, two diterpenoids found in germander (Teuchrium chamaedrys) used as an adjuvant to slimming herbal supplements that caused severe hepatotoxicity, are converted by CYP3A4 to reactive epoxide which reacts with proteins such as CYP3A and epoxide hydrolase and inactivate them. Some naturally occurring alkenylbenzenes (e.g. safrole, methyleugenol and estragole) and flavonoids (e.g. quercetin) can undergo bioactivation by sequential 1-hydroxylation and sulfation, resulting in reactive intermediates capable of forming DNA adducts. Extensive pulegone metabolism generated p-cresol that is a glutathione depletory. The hepatotoxicity of kava is possibly due to intracellular glutathione depletion and/or quinone formation. Moreover, several herbal compounds including capsaicin from chili peppers, dially sulfone in garlic, methysticin and dihydromethysticin in kava, oleuropein in olive oil, and resveratrol found in grape seeds are mechanism-based (suicide) inhibitors of various CYPs. Together with advances of proteomics, metabolomics and toxicogenomics, an integrated systems toxicological approach may provide deep insights into mechanistic aspects of herb-induced toxicities, and contribute to bridging the relationships between herbal bioactivation, protein/DNA adduct formation and the toxicological consequences.  相似文献   

11.
The activity of microsomal glutathione transferase was increased 1.7-fold in rat liver microsomes which carried out NADPH dependent metabolism of phenol. Known phenol metabolites were therefore tested for their ability to activate the microsomal glutathione transferase. The phenol metabolites benzoquinone and 1,2,4-benzenetriol both activated the glutathione transferase in microsomes 2-fold independently of added NADPH. However, NADPH was required to activate the enzyme in the presence of hydroquinone. Catechol did not activate the enzyme in microsomes. The purified enzyme was activated 6-fold and 8-fold by 5 mM benzenetriol and benzoquinone respectively. Phenol, catechol or hydroquinone had no effect on the purified enzyme. When microsomal proteins that had metabolized [14C]phenol were examined by SDS polyacrylamide gel electrophoresis and fluorography it was found that metabolites had bound covalently to a protein which comigrated with the microsomal glutathione transferase enzyme. We therefore suggest that reactive metabolites of phenol activate the enzyme by covalent modification. It is discussed whether the binding and activation has general implications in the regulation of microsomal glutathione transferase and, since some reactive metabolites might be substrates for the enzyme, their elimination through conjugation.  相似文献   

12.
Research on the effects of polychlorinated biphenyl (PCB) toxicity tends to focus on commercial PCB congeners and parent PCBs themselves. However, studies have suggested that PCB metabolites may be more interesting than the parent compounds because of their high reactivity. As a key metabolic enzyme, glutathione S-transferases (GSTs) are responsible for detoxification by catalyzing the conjugation reaction of glutathione (GSH) to xenobiotics. Inhibition of GST activity indicates reduced detoxification ability. We investigated the inhibition of chicken liver GSTs by parent PCBs and their metabolites and observed dose-dependent inhibition in vitro; inhibitory efficiency declined in the order GSH-conjugate > mono-hydroxyl ≈ quinone ≈ hydroquinone > parent PCB. Structure-inhibitory activity relationship studies indicated that with the inhibitory activity greatly increases with the number of GSH moieties or chlorine substituents on the quinone ring. However, no significant linear relationship was observed for chlorine pattern changes on the phenyl ring. The reversibility of PCB metabolite inhibition of GSTs is discussed. PCB mono-hydroxyl, hydroquinone and quinone forms showed irreversible inhibition of GSTs, which suggests a mechanism involving covalent binding to cysteine residues in the GST active site. PCB glutathionyl conjugates showed reversible GST inhibition, implying non-covalent binding. Furthermore, reactive oxygen species did not significantly affect GST activity.  相似文献   

13.
The present study was designed to explain the differences in isoprene toxicity between mouse and rat based on the liver concentrations of the assumed toxic metabolite isoprene diepoxide. In addition, extrapolation to the human situation was attempted. For this purpose, enzyme kinetic parameters K(m) and V(max) were determined in vitro in mouse, rat and human liver microsomes/cytosol for the cytochrome P450-mediated formation of isoprene mono- and diepoxides, epoxide hydrolase mediated hydrolysis of isoprene mono- and diepoxides, and the glutathione S-transferases mediated conjugation of isoprene monoepoxides. Subsequently, the kinetic parameters were incorporated into a physiologically-based pharmacokinetic model, and species differences regarding isoprene diepoxide levels were forecasted. Almost similar isoprene diepoxide liver and lung concentrations were predicted in mouse and rat, while predicted levels in humans were about 20-fold lower. However, when interindividual variation in enzyme activity was introduced in the human model, the levels of isoprene diepoxide changed considerably. It was forecasted that in individuals having both an extensive oxidation by cytochrome P450 and a low detoxification by epoxide hydrolase, isoprene diepoxide concentrations in the liver increased to similar concentrations as predicted for the mouse. However, the interpretation of the latter finding for human risk assessment is ambiguous since species differences between mouse and rat regarding isoprene toxicity could not be explained by the predicted isoprene diepoxide concentrations. We assume that other metabolites than isoprene diepoxide or different carcinogenic response might play a key role in determining the extent of isoprene toxicity. In order to confirm this, in vivo experiments are required in which isoprene epoxide concentrations will be established in rats and mice.  相似文献   

14.
Diallyl sulfone (DASO2) is a metabolite of diallyl sulfide, a compound derived from garlic. The present study investigated the effect of DASO2 as a protective agent against acetaminophen (APAP)-induced hepatotoxicity in mice. Oral administration of DASO2 protected mice against the APAP-induced hepatotoxicity in a dose- and time-dependent manner. When administrated 1 hour prior to, immediately after, or 20 minutes after a toxic dose of APAP, DASO2 at a dose of 25 mg/kg completely protected mice from development of hepatotoxicity, as indicated by liver histopathology and serum lactate dehydrogenase levels. Protective effect was observed when DASO2 at a dose as low as 5 mg/kg was given to mice 1 hour prior to APAP administration. Oral administration of DASO2 to mice 1 hour prior to a toxic dose of APAP significantly inhibited the APAP-induced glutathione depletion in the liver. DASO2 treatment also decreased the levels of oxidative APAP metabolites in the plasma without affecting the concentrations of nonoxidative APAP metabolites. In liver microsomes, 0.1 mM of DASO2 caused a 60% decrease in the rate of APAP oxidation to N-acetyl-p-benzoquinone imine, which was determined as glutathione conjugate. This inhibitory effect is mainly due to its inhibition of cytochrome P450 2E1 activity; with an IC50 value equal to 0.11 mM. DASO2 also slightly inhibited the activities of P450s 3A and 1A, with IC50 values >5 mM. Furthermore, a single oral dose of DASO2 inactivated P450 2E1- and P450 1A-dependent activities in liver microsomes. The results suggest that the protective effect of DASO2 against APAP-induced hepatotoxicity is due to its ability to block acetaminophen bioactivation mainly by the inactivation and inhibition of P450 2E1. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Levels of reduced glutathione (GSH) in C3H/10T1/2 cells were selectively altered to determine what quantitative role GSH transferase-catalyzed conjugation plays in regulating the cytotoxic effects of benzo(a)pyrene anti-7,8-dihydrodiol 9,10-epoxide (r-7,t-8-dihydroxy-t-9,10-oxy-7,8,9,10-tetrahydrobenzo(a)pyrene, anti-diol epoxide). A 65% decrease in 10T1/2 cell GSH content from 0.16 mM (control cell GSH concentration) to 0.06 mM was accompanied by a 46% decrease in the anti-diol epoxide LD80; a 98% increase in GSH content resulted in a 44% increase in anti-diol epoxide LD80. This nonlinear relationship between changes in cellular GSH concentration and anti-diol epoxide LD80 was directly relatable to the nonlinear change in the rate of anti-diol epoxide conjugation which was catalyzed by 10T1/2 cell GSH transferases. Purified 10T1/2 cell cytosol catalyzed the GSH conjugation of anti-diol epoxide to yield a GSH conjugation product with a distinct UV absorbance spectrum; the apparent GSH Km for this cell cytosol-catalyzed reaction was 0.20 mM. Variations in the cellular GSH concentration around the GSH Km resulted in a nonlinear change in the amount of anti-diol epoxide-GSH conjugate formed, and a reciprocal change in the amount of free anti-diol epoxide available for cytotoxic alkylation events. These results clarify in quantitative, biochemical terms how GSH transferase-catalyzed conjugation can regulate the level of an electrophilic carcinogen metabolite in a biological system.  相似文献   

16.
Oxidation of 2-phenylthiophene (2PT) by rat liver microsomes, in the presence of NADPH and glutathione (GSH), led to three kinds of metabolites whose structures were established by 1H NMR and mass spectrometry. The first ones were 2PT-S-oxide dimers formed by Diels-Alder type dimerization of 2PT-S-oxide, while the second ones were GSH adducts derived from the 1,4-Micha?l-type addition of GSH to 2PT-S-oxide. The third metabolites were GSH adducts resulting from a nucleophilic attack of GSH to the 4,5-epoxide of 2PT. Oxidation of 2PT by recombinant, human cytochrome P4501A1, in the presence of NADPH and GSH, also led to these three kinds of metabolites. These results provide the first evidence that cytochrome P450 may catalyze the oxidation of thiophene compounds with the simultaneous formation of two reactive intermediates, a thiophene-S-oxide and a thiophene epoxide.  相似文献   

17.
Herbal bioactivation: the good, the bad and the ugly   总被引:14,自引:0,他引:14  
Zhou S  Koh HL  Gao Y  Gong ZY  Lee EJ 《Life sciences》2004,74(8):935-968
It has been well established that the formation of reactive metabolites of drugs is associated with drug toxicity. Similarly, there are accumulating data suggesting the role of the formation of reactive metabolites/intermediates through bioactivation in herbal toxicity and carcinogenicity. It has been hypothesized that the resultant reactive metabolites following herbal bioactivation covalently bind to cellular proteins and DNA, leading to toxicity via multiple mechanisms such as direct cytotoxicity, oncogene activation, and hypersensitivity reactions. This is exemplified by aristolochic acids present in Aristolochia spp, undergoing reduction of the nitro group by hepatic cytochrome P450 (CYP1A1/2) or peroxidases in extrahepatic tissues to reactive cyclic nitrenium ion. The latter was capable of reacting with DNA and proteins, resulting in activation of H-ras oncogene, gene mutation and finally carcinogenesis. Other examples are pulegone present in essential oils from many mint species; and teucrin A, a diterpenoid found in germander (Teuchrium chamaedrys) used as an adjuvant to slimming diets. Extensive pulegone metabolism generated p-cresol that was a glutathione depletory, and the furan ring of the diterpenoids in germander was oxidized by CYP3A4 to reactive epoxide which reacts with proteins such as CYP3A and epoxide hydrolase. On the other hand, some herbal/dietary constituents were shown to form reactive intermediates capable of irreversibly inhibiting various CYPs. The resultant metabolites lead to CYP inactivation by chemical modification of the heme, the apoprotein, or both as a result of covalent binding of modified heme to the apoprotein. Some examples include bergamottin, a furanocoumarin of grapefruit juice; capsaicin from chili peppers; glabridin, an isoflavan from licorice root; isothiocyanates found in all cruciferous vegetables; oleuropein rich in olive oil; dially sulfone found in garlic; and resveratrol, a constituent of red wine. CYPs have been known to metabolize more than 95% therapeutic drugs and activate a number of procarcinogens as well. Therefore, mechanism-based inhibition of CYPs may provide an explanation for some reported herb-drug interactions and chemopreventive activity of herbs. Due to the wide use and easy availability of herbal medicines, there is increasing concern about herbal toxicity. The safety and quality of herbal medicine should be ensured through greater research, pharmacovigilance, greater regulatory control and better communication between patients and health professionals.  相似文献   

18.
Idiosyncratic adverse drug reactions (ADRs) are one of the most common causes of pharmaceutical withdrawals and labeling changes. Most ADRs are caused by drugs that form reactive species that can bind covalently to macromolecules such as proteins. The current methodology for the measurement of covalent binding relies on the use of radiolabeled material that requires an investment in time and resources not typically expended until later in the discovery process. Efforts are also made to identify reactive intermediates by the use of chemical trapping agents, such as reduced glutathione and cyanide, to form stable adducts that are characterized by liquid chromatography-tandem mass spectrometry and/or nuclear magnetic resonance spectroscopy. Here, we describe a high-throughput assay for the measurement of reactive intermediate formation. The method involves incubation of cold compound with liver microsomes in the presence of [14C]potassium cyanide. Hard electrophilic species would react with the trapping agent, resulting in the formation of a radiolabeled conjugate. Unreacted trapping agent is removed using solid-phase extraction, and the amount of radiolabeled conjugate present is determined by liquid scintillation counting. This newly developed screen has proved to be specific, sensitive, robust, and a powerful tool for assessing bioactivation potential.  相似文献   

19.
1. Orally administered 3H-benzo[a]pyrene (3H-BaP) was excreted in the bile of White Suckers predominantly as water soluble metabolites some of which were hydrolyzed by arylsulfatase or beta-glucuronidase. 2. Non-hydrolysible polar metabolites comprised a substantial proportion of biliary metabolites. 3. HPLC analysis revealed fluorescent and 3H-labelled peaks which co-eluted with standards of the glucuronide and sulfate conjugates of BaP. 4. The most polar peak co-chromatographed with a double-radiolabelled metabolite produced in vitro with 3H-BaP and 35S-glutathione. 5. Inhibition of epoxide hydrolase in vitro reduced all water soluble metabolites except the glutathione conjugate of BaP. 6. Glutathione conjugation represents a major hepatic detoxication pathway of BaP in White Suckers.  相似文献   

20.
Inhibition of hepatic cysteine proteases by non-steroidal anti-inflammatory drug (NSAID) metabolites is implicated in several pathological conditions. It has been reported in the literature that N-acetyl-p-benzoquinone imine (NAPQI), a reactive metabolite of acetaminophen (APAP) can quickly arylate and oxidize thiol (cysteine) protease of the papain family to form an adduct in the pathogenesis of acetaminophen-induced hepatotoxicity. It was also clarified by earlier NMR studies that the 3-position of the aromatic ring (C-3) is the only site of conjugation with cysteinyl thioethers for protein arylation. In a recent study, the adduct of NAPQI has been identified and characterized by LC/MS/MS, LC/NMR and UV spectroscopy, and two possible covalent binding modes corresponding to the 2-position (model-1) and the 3 -position (model-2) of the aromatic ring of NAPQI have been proposed. The work presented here has been initiated to check the structural viability of inhibition for the two proposed adducts at the atomic level. Results of our investigation by computer-assisted molecular modeling structurally demonstrate why model-2 would be more applicable to the static x-ray structure of the complex at physiological pH. This coordinated computational and molecular biology experiment can be used for metabolic screening of NSAIDs. A combinatorial approach of this kind alleviates the doubts in interpreting the results of metabolic function and enhances our insights obtained from either computational or experimental studies alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号