首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forestry plantations represent about 4 % of the global land cover and demand for wood is steadily increasing worldwide. Impacts of forest plantations on biodiversity are controversial; forest plantations could positively influence biodiversity by producing a buffer zone between native forests and agriculture, while replacement of native forests with plantations could reduce biodiversity. Chile is one of the main producers of wood worldwide, and production is largely based on intensively managed monocultures of exotic tree species. Only a few studies have looked at the effects of forestry plantations on biodiversity in Chile, mainly focusing on pine plantations. The aim of this study was to characterize habitat use and richness of bats between native forests, eucalyptus plantations and grasslands in a biodiversity hotspot in southern Chile to determine how land use affects an important mammalian taxa. We found no difference in use or richness of bats in eucalyptus plantations versus native forests. Regional context within the larger Valdivian watershed (Andes, central valley, coastal range) had a stronger influence on bat activity and richness than land use type (native forest, plantation, grassland), with the Andean region being the most diverse and where most bat activity is concentrated. Our results suggest that the composition and structure of the surrounding landscape mosaic may be fundamental to determine the impacts of forestry and human land use on biodiversity.  相似文献   

2.
Expansion of oil palm plantations across the humid tropics has precipitated massive loss of tropical forest habitats and their associated speciose biotas. Oil palm plantation monocultures have been identified as an emerging threat to Amazonian biodiversity, but there are no quantitative studies exploring the impact of these plantations on the biome’s biota. Understanding these impacts is extremely important given the rapid projected expansion of oil palm cultivation in the basin. Here we investigate the biodiversity value of oil palm plantations in comparison with other dominant regional land-uses in Eastern Amazonia. We carried out bird surveys in oil palm plantations of varying ages, primary and secondary forests, and cattle pastures. We found that oil palm plantations retained impoverished avian communities with a similar species composition to pastures and agrarian land-uses and did not offer habitat for most forest-associated species, including restricted range species and species of conservation concern. On the other hand, the forests that the oil palm companies are legally obliged to protect hosted a relatively species-rich community including several globally-threatened bird species. We consider oil palm to be no less detrimental to regional biodiversity than other agricultural land-uses and that political pressure exerted by large landowners to allow oil palm to count as a substitute for native forest vegetation in private landholdings with forest restoration deficits would have dire consequences for regional biodiversity.  相似文献   

3.
Tropical plantations are rapidly expanding as a source of industrial wood. In Indonesia, such large-scale industrial plantations are generally made of large mono-specific blocks interspersed with natural forest remnants. The extent and biodiversity value of these remnants vary as laws and regulations on their design and management are either unclear, without solid scientific basis or left to the interpretation of private companies responsible for the plantations. Our study area comprises of three Acacia mangium plantations, which have on average 18% of their total area set aside from production and conserved as natural forests. These remnant natural forests may, if appropriately designed and managed, be used to mitigate the negative impact of plantations on biodiversity by providing some degree of connectivity with and between remaining natural forest patches (such as the Tesso Nilo conservation area). We sampled natural vegetation in one and primate diversity in all three plantation sector and examined patterns of primate species richness and abundance with relation to spatial arrangement and dimensions of conservation area, which has been set aside from plantation production. We demonstrate unambiguously the critical importance of a well-connected network of natural forest corridors in the plantation landscape to maintain primates and discuss the potential biodiversity value of natural forest remnants in broad-scale industrial landscapes.  相似文献   

4.
Neotropical rainforests are global biodiversity hotspots and are challenging to restore. A core part of this challenge is the very long recovery trajectory of the system: recovery of structure can take 20–190 years, species composition 60–500 years, and reestablishment of rare/endemic species thousands of years. Passive recovery may be fraught with instances of arrested succession, disclimax or emergence of novel ecosystems. In these cases, active restoration methods are essential to speed recovery and set a desired restoration trajectory. Tree plantation is the most common active approach to reestablish a high density of native tree species and facilitate understory regeneration. While this approach may speed the successional trajectory, it may not achieve, and possibly inhibit, a long-term restoration trajectory towards the high species diversity characteristic of these forests. A range of nucleation techniques (e.g., tree island planting) are important restoration options: although they may not speed recovery of structure as quickly as plantations, their emphasis on natural regeneration processes may enable greater and more natural patterns of diversity to develop. While more work needs to be done to compare forest restoration techniques in different environmental contexts, it appears that nucleation and, at times, passive restoration may best preserve the diverse legacy of these forested systems (both with lower costs). An integrated approach using both plantation productivity but also the natural functions associated with nucleation may develop composition and diversity trajectory desired in Neotropical conservation efforts.  相似文献   

5.
自然与人工恢复对川西高山采伐迹地植物群落特征的影响   总被引:1,自引:0,他引:1  
以天然林为对照,选取自然恢复(40年)与人工恢复(30、40和50年)下川西高山采伐迹地,研究不同恢复途径下川西高山采伐迹地的植物群落特征.结果 表明:采伐迹地经过40年的自然恢复演替成为高山绣线菊次生灌丛,人工恢复后成为川西云杉林,与天然林群落相似性分别为极不相似(0.19)和中等不相似(0.28~0.49).自然与...  相似文献   

6.
The global community is seeking to substantially restore the world's forest cover to improve the supply of ecosystem services. However, it is not clear what type of reforestation must be used and there is a risk that the techniques used in industrial timber plantations will become the default methodology. This is unlikely to be sufficient because of the well‐known relationship between biodiversity and ecological functioning. Restoration may be achieved through natural regeneration but this may not always occur at critical locations. Ecological restoration involving species‐rich plantings might also be used but can be difficult to implement at landscape scales. I review here the consequence of planting more limited numbers of species and the effects of this on the delivery of ecosystem services. Evidence suggests many commonly sought ecosystem services—though not all—may be generated by the modest levels of species richness provided these species have appropriate traits. The literature also shows that the alpha diversity of restored forests is not the only driver of functionality and that the location and extent of any reforestation are significant as well; beta and gamma diversity may also affect functionality but these relationships remain unclear. Encouraging the adoption of even moderately diverse plantings at landscape scales and at key locations will require policies and institutions to balance the type, location, and scale of restoration and make the necessary trade‐offs between national and local aspirations. New approaches and metrics will have to be developed to monitor and assess restoration success at these larger scales.  相似文献   

7.
Tropical forests continue to vanish rapidly,but few long-term studies have ever examined if and how the lost forests can be restored.Based on a 45-year restoration study in south China,we found that a tropical rain forest,once completely destroyed,could not recover naturally without deliberate restoration efforts.We identified two kinds of thresholds that must be overcome with human ameliorative measures before the ecosystem was able to recover.The first threshold was imposed primarily by extreme physical conditions such as exceedingly high surface temperature and impoverished soil,while the second was characterized by a critical level of biodiversity and a landscape context that accommodates dispersal and colonization processes.Our three treatment catchments(un-restored barren land,single-species plantation,and mixed-forest stand)exhibited dramatically different changes in biodiversity and ecosystem functioning over 4 decades.The mixed forest,having the highest level of biodiversity and ecosystem functioning,possesses several major properties of tropical rain forest.These findings may have important implications for the restoration of many severely degraded or lost tropical forest ecosystems.  相似文献   

8.
Tropical forests continue to vanish rapidly, but few long-term studies have ever examined if and how the lost forests can be restored. Based on a 45-year restoration study in south China, we found that a tropical rain forest, once completely destroyed, could not recover naturally without deliberate restoration efforts. We identified two kinds of thresholds that must be overcome with human ameliorative measures before the ecosystem was able to recover. The first threshold was imposed primarily by extreme physical conditions such as exceedingly high surface temperature and impoverished soil, while the second was characterized by a critical level of biodiversity and a landscape context that accommodates dispersal and colonization processes. Our three treatment catchments (un-restored barren land, single-species plantation, and mixed-forest stand) exhibited dramatically different changes in biodiversity and ecosystem functioning over 4 decades. The mixed forest, having the highest level of biodiversity and ecosystem functioning, possesses several major properties of tropical rain forest.These findings may have important implications for the restoration of many severely degraded or lost tropical forest ecosystems.  相似文献   

9.
Plantation forests generally support lower bird diversity than natural forests. However, in some instances the plantations have been found to provide suitable habitat for a number of bird species. In the Eastern Arc Mountains, there is limited knowledge how understorey birds, some of which make seasonal altitudinal movements, use plantations. Using mist netting we assessed seasonal use of the plantation forest by the understorey bird community in Bunduki Forest Reserve in the Uluguru Mountains. Species diversity and capture rates were significantly higher during the cold season than during the hot season possibly due to seasonal altitudinal migration by some species. The use of plantations by those species that make seasonal altitudinal movements shows that plantation forests can enhance indigenous biodiversity by enabling connectivity between two or more natural forest patches. Our findings suggest that in a situation where there is no natural forest, an exotic plantation with suitable indigenous understorey cover can help in protection of birds, including endemic and near-endemic species.  相似文献   

10.
As the area of plantation forest expands worldwide and natural, unmanaged forests decline there is much interest in the potential for planted forests to provide habitat for biodiversity. In regions where little semi-natural woodland remains, the biodiversity supported by forest plantations, typically non-native conifers, may be particularly important. Few studies provide detailed comparisons between the species diversity of native woodlands which are being depleted and non-native plantation forests, which are now expanding, based on data collected from multiple taxa in the same study sites. Here we compare the species diversity and community composition of plants, invertebrates and birds in Sitka spruce- (Picea sitchensis-) dominated and Norway spruce- (Picea abies-) dominated plantations, which have expanded significantly in recent decades in the study area in Ireland, with that of oak- and ash-dominated semi-natural woodlands in the same area. The results show that species richness in spruce plantations can be as high as semi-natural woodlands, but that the two forest types support different assemblages of species. In areas where non-native conifer plantations are the principle forest type, their role in the provision of habitat for biodiversity conservation should not be overlooked. Appropriate management should target the introduction of semi-natural woodland characteristics, and on the extension of existing semi-natural woodlands to maintain and enhance forest species diversity. Our data show that although some relatively easily surveyed groups, such as vascular plants and birds, were congruent with many of the other taxa when looking across all study sites, the similarities in response were not strong enough to warrant use of these taxa as surrogates of the others. In order to capture a wide range of biotic variation, assessments of forest biodiversity should either encompass several taxonomic groups, or rely on the use of indicators of diversity that are not species based.  相似文献   

11.
Landscape context and contrast are major features of transformed landscapes. These concepts are largely described in terms of vegetation and land use, and are rarely used on how other biodiversity responds to these anthropogenic boundaries. South African grassland matrix is naturally dotted with indigenous forest patches which have recently been transformed with plantations of non-native species. We investigate how various arthropod groups (detritivores, predators, ants) respond to juxtaposition of pines, natural forests and grasslands. We assess landscape context effects between natural forests and pines by determining how species that commonly occur in the interiors of these habitats use the adjacent habitat, and how landscape contrast between natural forests and grassland affects these groups proportionately. We sampled arthropods using pitfall traps and active searches in transects running from natural forest interiors across the edge into the matrix interior (grassland or pines). Natural forests had higher predator and detritivore diversity, while grassland had greater ant diversity. Results highlighted the complementarity of natural forests and grassland for arthropod diversity. Higher beta-diversity was recorded across landscape contrast than landscape context. Pine and natural forest associated species overlapped into adjacent habitats indicating that pines are used by certain natural forest species. However, pines are not true natural forest extensions, with only some species being supported. Pines may be connecting naturally isolated arthropod populations, which could have important evolutionary consequences. Only through appreciation of a range of arthropod groups and their response to context and contrast across the whole landscape can we undertake meaningful biodiversity conservation.  相似文献   

12.
In the face of the continuing destruction of tropical rainforests, a major challenge is to understand the consequences of these habitat changes for biodiversity and the time scale at which biodiversity can recover after such disturbances. In this study, we assessed the patterns in communities of birds among forests of varying age consisting of clear-cuts of former coniferous plantations, selectively logged compartments and primary forests in Kibale National Park, Uganda. Birds were surveyed by 10-minute point counts at 174 randomly located points in nine forest areas during September–October 2011. A total of 2 688 birds representing 115 species were recorded. The species density, diversity and dominance of all birds, and dominance of forest specialists showed no differences between forest areas, whereas the species density and diversity of forest specialists differed significantly between forest areas. The composition of communities of all birds and of forest specialists varied significantly among the forest areas. Our results show that even after 19 and 43 years, respectively, communities of birds in clear-cuts of former coniferous plantations and selectively logged forests have not fully recovered from the disturbances of logging, highlighting the need to preserve primary forests for conservation of birds.  相似文献   

13.
Large‐scale forest restoration relies on approaches that are cost‐effective and economically attractive to farmers, and in this context agroforestry systems may be a valuable option. Here, we compared ecological outcomes among (1) 12–15‐year‐old coffee agroforests established with several native shade trees, (2) 12–15‐year‐old high‐diversity restoration plantations, and (3) reference old‐growth forests, within a landscape restoration project in the Pontal do Paranapanema region, in the Atlantic Forest of southeastern Brazil. We compared the aboveground biomass, canopy cover, and abundance, richness, and composition of trees, and the regenerating saplings in the three forest types. In addition, we investigated the landscape drivers of natural regeneration in the restoration plantations and coffee agroforests. Reference forests had a higher abundance of trees and regenerating saplings, but had similar levels of species richness compared to coffee agroforests. High‐diversity agroforests and restoration plantations did not differ in tree abundance. However, compared to restoration plantations, agroforests showed higher abundance and species richness of regenerating saplings, a higher proportion of animal‐dispersed species, and higher canopy cover. The abundance of regenerating saplings declined with increasing density of coffee plants, thus indicating a potential trade‐off between productivity and ecological benefits. High‐diversity coffee agroforests provide a cost‐effective and ecologically viable alternative to high‐diversity native tree plantations for large‐scale forest restoration within agricultural landscapes managed by local communities, and should be included as part of the portfolio of reforestation options used to promote the global agenda on forest and landscape restoration.  相似文献   

14.
Local fisherfolk and fishpond owners have been practicing “restoration” of mangrove forests in some parts of the Philippines for decades, well before governments and non‐government organizations began to promote the activity as a conservation tool. This paper examines ecological characteristics of these mangrove plantations and compares them to natural mangroves in the same areas. Mangrove planters were interviewed and plantation and natural mangrove forests were surveyed to measure forest structure, composition and regeneration. Compared with natural forests, mangrove plantations were characterized by high densities of small stems, shorter and narrower canopies, and fewer species. For both economic and ecological reasons, the vast majority of people dispersed and planted only Rhizophora mucronata/stylosa and, furthermore, they often thinned other species out of planted areas. There was remarkably little subsequent recruitment of other, nonplanted mangrove species into plantations up to 50 and 60 years of age. This pattern held across a diversity of sites, including plantations that had not been selectively cut or weeded. Important ecological and economic benefits result from local mangrove planting, but catalyzing diverse forest regeneration—at least in the short to medium term—is not one of them. The lesson: if you want to restore diverse mangrove forests, you have to plant diverse mangrove forests.  相似文献   

15.
Industrial timber plantations severely impact biodiversity in Southeast Asia. Forest fragments survive within plantations, but their conservation value in highly deforested landscapes in Southeast Asia is poorly understood. In this study, we compared bird assemblages in acacia plantations and fragmented forests in South Sumatra to evaluate each habitat’s potential conservation value. To clarify the impact of habitat change, we also analyzed the response of feeding guild composition. Five habitat types were studied: large logged forest (LLF), burnt logged forest (BLF), remnant logged forest (RLF), 4-year-old acacia plantation (AP4), and 1-year-old acacia plantation (AP1). Estimated species richness (Chao 2) was highest in LLF then AP4 and BLF, while AP1 and RLF had lower estimated species richness. Community composition was roughly divided into two groups by non-metric multidimensional scaling ordination: acacia plantation and logged forest. Sallying substrate-gleaning insectivores, such as drongos, broadbills, and some flycatchers, were restricted to LLF, whereas acacia plantation hosted many terrestrial frugivores, such as doves. Although fragmented forests in our study site lacked several common tropical forest species, these fragments provide an important habitat for some sallying and terrestrial insectivores. A network of small riparian remnant forests could be a complementary habitat for some species, while the conservation value of burnt forest might be low. In conclusion, the highly fragmented forests in plantations are suboptimal habitats for birds but are still very important, because large primary forest blocks have been nearly lost in the surrounding landscape.  相似文献   

16.
Potential value of weedy regrowth for rainforest restoration   总被引:2,自引:0,他引:2  
Summary  In subtropical Australia, regrowth forests in former rainforest landscapes are often dominated by the exotic tree, Camphor Laurel ( Cinnamomum camphora ). In this paper, we report on research into the value of these regrowth stands for rainforest biota. Our initial surveys indicated that Camphor Laurel stands supported a similar number of rainforest animals as restoration plantings, and usually more than timber plantations. Subsequent surveys found that stands of Camphor Laurel supported a high diversity of fruit-eating birds and had recruited a diverse suite of rainforest plants. More recently, we surveyed stands of Camphor Laurel treated by restoration practitioners using 'patch' or 'selective' removal of exotic plants. We found that both treatment methods accelerated the recruitment of rainforest plants to Camphor Laurel stands, and that treatment was usually much cheaper than the cost of establishing restoration plantings. Recognition of the value of weedy regrowth for native plants and animals, and the potential utility of manipulating weedy regrowth to achieve cost-effective restoration, could increase the likelihood of achieving the large-scale increases in forest cover that will be needed to restore biodiversity and ecosystem services to extensively cleared regions.  相似文献   

17.
1. While it is clear that land‐use change significantly impacts the taxonomic dimension of soil biodiversity, how the functional dimension responds to land‐use change is less well understood. 2. This study examined how the transformation of primary forests into rubber tree monocultures impacts individual termite species and how this change is reflected in termite taxonomic and functional α‐diversity (within site) and β‐diversity (among sites). 3. Overall, individual species responded strongly to land‐use change, whereby only 11 of the 27 species found were able to tolerate both habitats. These differences caused a 27% reduction in termite taxonomic richness and reduced taxonomic β‐diversity in rubber plantations compared with primary forests. The study also revealed that the forest conversion led to a shift in some termite species with smaller body size, shorter legs and smaller mandibular traits. Primary forests exhibited higher functional richness and functional β‐diversity of termite species, indicating that functional traits of termite species in rubber plantations are more evenly distributed. 4. The present study suggests that forest conversion does not merely decrease taxonomic diversity of termites, but also exerts functional trait filtering within some termite species. The results affirm the need for biodiversity assessments that combine taxonomic and functional indicators when monitoring the impact of land‐use change.  相似文献   

18.
Conversion of diverse native forests to tree monocultures remains an ongoing, worldwide threat to biodiversity. Although the effects of forest conversion have been studied in a wide range of taxonomic groups, the effects on macrofungal communities remain poorly understood. We sampled macrofungal fruiting bodies in the National Forest of São Francisco de Paula in Southern Brazil over 12 months in four different forest habitats: native Araucaria angustifolia forest, A. angustifolia plantation, Pinus taeda or P. elliottii plantation, and Eucalyptus saligna plantation. The distribution of macrofungal species in different functional groups varied among habitats: the macrofungal species composition of the A. angustifolia plantation was more similar to that of the native forest, while the exotic Pinus or Eucalyptus plantations were less similar to the native forest. The conversion of native forest to exotic tree plantations reduced the number of macrofungal decomposer species, probably due to changes in substrate availability and quality. We conclude that fungal diversity and ecosystem functionality require the preservation of native, mature forests and suggest a shift of Brazilian forestry guidelines to encourage the plantations of native species instead of exotics.  相似文献   

19.
The conversion of tropical rain forests to oil palm plantations is a major threat to Southeast Asia's rich biodiversity. Fostering forest species communities in secondary forests, agroforestry systems, and plantations is therefore increasingly becoming a conservation focus. This study uses standardized transect‐based sampling to compare species richness, density and community composition of stream anuran assemblages among primary forests, repeatedly logged forests and oil palm plantations in northern Borneo. In primary forest streams, we recorded an average of 19 frog species, compared to 15 species in logged forests and 11 species in oil palm plantation streams. However, the high percentage of canopy cover above the plantation streams mitigated this loss to some extent. This study corroborates numerous studies that oil palm plantations have mainly negative effects on the region's biodiversity. However, our results also demonstrate the high conservation value of logged forests for Bornean stream‐dependent anurans. We conclude that palm plantations have a largely unused potential to promote regional anuran biodiversity.  相似文献   

20.
As conservation reserves expand, the likelihood that they will capture areas degraded by previous land use increases. Ecological restoration of such areas will therefore play an increasing role in biodiversity conservation. On the New South Wales North Coast, recent expansion in the conservation estate has captured over 300 softwood and hardwood plantations, many with understoreys dominated by exotic weeds. Here we present an overview of the practices we have adopted in managing flooded gum (Eucalyptus grandis) plantations infested with lantana (Lantana camara) to enhance their biodiversity value. Experiments designed to overcome barriers limiting regeneration of native forest in conjunction with measurement of soil and plant responses yielded insights into the management of former timber plantations for biodiversity. Canonical Correspondence Analysis indicated that the level of canopy retention (or logging intensity) within sites consistently explained the greatest amount of variation in plant community composition (32–38% post-treatment). Thinning and burning stimulated regeneration of native species. Retained canopy cover was proportional to the richness or abundance of native woody shrubs, understorey trees and native perennial herbs, indicating that management intensity can be varied to promote a range of conservation values. A state-and-transition model summarising purported management actions and likely outcomes for these plantations is presented. This is the first time plantations have been managed solely for biodiversity. Logging income means that plantation restoration can be cost-neutral, and the positive influence of a cover crop of trees means that plantation management may generally be manipulated to promote biodiversity conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号