首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osmotic stress diminishes cell productivity and may cause cell inactivation in industrial fermentations. The quantification of metabolic changes under such conditions is fundamental for understanding and describing microbial behavior during bioprocesses. We quantified the gradual changes that take place when a lysine-overproducing strain of Corynebacterium glutamicum is grown in continuous culture with saline gradients at different dilution rates. The use of compatible solutes depended on environmental conditions; certain osmolites predominated at different dilution rates and extracellular osmolalities. A metabolic flux analysis showed that at high dilution rates C. glutamicum redistributed its metabolic fluxes, favoring energy formation over growth. At low dilution rates, cell metabolism accelerated as the osmolality was steadily increased. Flexibility in the oxaloacetate node proved to be key for the energetic redistribution that occurred when cells were grown at high dilution rates. Substrate and ATP maintenance coefficients increased 30- and 5-fold, respectively, when the osmolality increased, which demonstrates that energy pool management is fundamental for sustaining viability.  相似文献   

2.
In dormant conidia of Aspergillus oryzae, alpha-amylase, invertase, and glucose dehydrogenase were induced by their respective inducers. Neither germination nor swelling occurred during this period.  相似文献   

3.
4.
G Zhao  Y Yao  W Qi  C Wang  L Hou  B Zeng  X Cao 《Eukaryotic cell》2012,11(9):1178
Aspergillus oryzae is the most important fungus for the traditional fermentation in China and is particularly important in soy sauce fermentation. We report the 36,547,279-bp draft genome sequence of A. oryzae 3.042 and compared it to the published genome sequence of A. oryzae RIB40.  相似文献   

5.
The effect of different media and pH on the formation of amylase by Aspergillus oryzae EI 212 is described. Depending upon the composition of the medium and growth conditions, the fungus was found to secrete alpha- or beta-amylase, or both. Some of the properties of the partially purified alpha-amylase were found to be different from alpha-amylases from other sources.  相似文献   

6.
7.
8.
Aspergillus oryzae produces a unique β-glucosidase, isoprimeverose-producing oligoxyloglucan hydrolase (IPase), that recognizes and releases isoprimeverose (α-d-xylopyranose-(1→6)-d-glucopyranose) units from the non-reducing ends of oligoxyloglucans. A gene encoding A. oryzae IPase, termed ipeA, was identified and expressed in Pichia pastoris. With the exception of cellobiose, IpeA hydrolyzes a variety of oligoxyloglucans and is a member of the glycoside hydrolase family 3. Xylopyranosyl branching at the non-reducing ends was vital for IPase activity, and galactosylation at a α-1,6-linked xylopyranosyl side chain completely abolished IpeA activity. Hepta-oligoxyloglucan saccharide (Xyl3Glc4) substrate was preferred over tri- (Xyl1Glc2) and tetra- (Xyl2Glc2) oligoxyloglucan saccharides substrates. IpeA transferred isoprimeverose units to other saccharides, indicating transglycosylation activity. The ipeA gene was expressed in xylose and xyloglucan media and was strongly induced in the presence of xyloglucan endo-xyloglucanase-hydrolyzed products. This is the first study to report the identification of a gene encoding IPase in eukaryotes.  相似文献   

9.
10.
WYK-1 is a dipeptidyl peptidase IV inhibitor produced by Aspergillus oryzae strain AO-1. Because WYK-1 is an isoquinoline derivative consisting of three l-amino acids, we hypothesized that a nonribosomal peptide synthetase was involved in its biosynthesis. We identified 28 nonribosomal peptide synthetase genes in the sequenced genome of A. oryzae RIB40. These genes were also identified in AO-1. Among them, AO090001000009 (wykN) was specifically expressed under WYK-1-producing conditions in AO-1. Therefore, we constructed wykN gene disruptants of AO-1 after nonhomologous recombination was suppressed by RNA interference to promote homologous recombination. Our results demonstrated that the disruptants did not produce WYK-1. Furthermore, the expression patterns of 10 genes downstream of wykN were similar to the expression pattern of wykN under several conditions. Additionally, homology searches revealed that some of these genes were predicted to be involved in WYK-1 biosynthesis. Therefore, we propose that wykN and the 10 genes identified in this study constitute the WYK-1 biosynthetic gene cluster.  相似文献   

11.
12.
Spores from the co-culture of Aspergillus foetidus and Rhizopus oryzae were subjected to UV, heat and NTG (3-nitro,5-methylguanidine) mutagenesis. A few colonies were screened from the selected media for tannase study. Amongst all, the best mutant isolated from the heat treatment (60 degrees C for 60 min) was SCPR 337. The maximum yield of gallic acid and tannase in case of mutant strain was 95.2% and 53.6 U/ml with an incubation period of 30 h as compared to wild strain where the incubation period was 48 h with an enzyme activity of 44.2 U/ml and gallic acid yield of 94%, respectively. The mutant was sensitive to tetracycline and was also an over-producer of protease and amylase.  相似文献   

13.
Ku genes play a key role in the non-homologous end-joining pathway. We have identified Ku70 and Ku80 homologs in the koji molds Aspergillus sojae and Aspergillus oryzae, and have constructed the disruption mutants of Ku70, Ku80, and Ku70-80 to characterize the phenotypic change in these mutants. Neither Ku70- nor Ku80-disrupted strains show hypersensitivity to the DNA damaging agents methylmethane sulfonate (MMS) and phleomycin. Moreover, undesirable phenotypes, such as poor growth or repressed conidiospore formation, were not observed in the Ku-disrupted A. sojae and A. oryzae.  相似文献   

14.
Malic acid, a petroleum-derived C4-dicarboxylic acid that is used in the food and beverage industries, is also produced by a number of microorganisms that follow a variety of metabolic routes. Several members of the genus Aspergillus utilize a two-step cytosolic pathway from pyruvate to malate known as the reductive tricarboxylic acid (rTCA) pathway. This simple and efficient pathway has a maximum theoretical yield of 2 mol malate/mol glucose when the starting pyruvate originates from glycolysis. Production of malic acid by Aspergillus oryzae NRRL 3488 was first improved by overexpression of a native C4-dicarboxylate transporter, leading to a greater than twofold increase in the rate of malate production. Overexpression of the native cytosolic alleles of pyruvate carboxylase and malate dehydrogenase, comprising the rTCA pathway, in conjunction with the transporter resulted in an additional 27 % increase in malate production rate. A strain overexpressing all three genes achieved a malate titer of 154 g/L in 164 h, corresponding to a production rate of 0.94 g/L/h, with an associated yield on glucose of 1.38 mol/mol (69 % of the theoretical maximum). This rate of malate production is the highest reported for any microbial system.  相似文献   

15.
Addition of 100 millimolar KCl, NaCl, or Na2SO4 strongly promoted acidification of the medium by cells of Nicotiana tabacum/gossii in suspension culture. Acidification was greater in the case of NaCl-adapted than in that of wild type cells, and strikingly so in KCl medium when fusicoccin (FC) was present. Back-titration indicated that net proton secretion in KCl medium was increased 4-fold by FC treatment in the case of adapted cells; but was not even doubled in wild type cells. Membrane potential was higher in NaCl-adapted cells. FC treatment hyperpolarized wild, but not NaCl-adapted cells, suggesting a higher degree of coupling between H+ efflux and K+ influx in adapted cells; FC enhanced net K+ uptake in adapted but not in wild cells. Acidification by cells suspended in 10 millimolar KCl was highly sensitive to vanadate, but that after addition of 100 millimolar KCl or NaCl was much less sensitive. Addition of 100 millimolar NaCl to wild type cells already provided with 10 millimolar KCl briefly accelerated, then slowed down the rate of acidification. If the addition was made after acidification had already ceased, alkalization was observed, particularly in the presence of FC. The results are consistent with the operation of a Na+-H+ antiporter.  相似文献   

16.
Hao  Qing  Liu  Xiaoguang  Zhao  Guozhong  Jiang  Lu  Li  Ming  Zeng  Bin 《Biotechnology letters》2016,38(3):519-525
Biotechnology Letters - To characterize biochemically the lipid metabolism-regulating acyl-CoA binding protein (ACBP) from the industrially-important fungus Aspergillus oryzae. A full-length cDNA...  相似文献   

17.
Mutants exhibiting resistance to the fungicide, carboxin, were isolated from Aspergillus oryzae, and the mutations in the three gene loci, which encode succinate dehydrogenase (SDH) B, C, and D subunits, were identified to be independently responsible for the resistance. A structural model of the SDH revealed the different mechanisms that confer carboxin-resistance in different mutations. The mutant AosdhB gene (AosdhB(cxr)) was further examined for possible use as a transformant selection marker. After transformation with AosdhB(cxr), carboxin-resistant colonies appeared within 4 days of culture, and all of the examined colonies carried the transgene. Insertion analyses revealed that the AosdhB(cxr) gene was integrated into AosdhB locus via homologous recombination at high efficiency. Furthermore, AosdhB(cxr) functioned as a successful selection marker in a transformation experiment in Aspergillus parasiticus, suggesting that this transformation system can be used for Aspergillus species.  相似文献   

18.
A wild type strain ofVerticillium lecanii and a mutant strain with increased tolerance to the fungicide benomyl were evaluated in greenhouse experiments for effects on Heterodera glycines populations. Nematodes were applied at 300 eggs and juveniles per 4,550-cm³ pot (two soybean plants in 4,990 g loamy sand per pot) and at both 300 and 10,000 eggs and juveniles per 1,720-cm³ pot (one soybean plant in 2,060 g sand per pot). With 300 nematodes added per pot, both V. lecanii strains significantly reduced nematode populations in loamy sand (fungus applied at 0.02% dry weight per dry weight loamy sand) and sand (0.006% and 0.06% fungus application rates). The mutant strain applied at 0.002% to sand also significantly reduced cyst numbers. When 10,000 nematodes were added per pot, only the mutant strain at 0.06% significantly decreased population. Various media were tested for isolation of the fungus strains from prills, loamy sand, and sand, but the fungi were recovered from few of the greenhouse pots.  相似文献   

19.
Conclusions Invasive growth or systemic infections by A. oryzae in healthy humans have never been reported. In a few cases, however, isolates identified as A. oryzae have been recovered from debilitated patients. A. oryzae has therefore low pathogenic potential but may, like many other harmless microorganisms, grow in human tissue under exceptional circumstances. Allergic diseases primarily caused by A. oryzae have been reported in few cases, but probably presuppose both a sensitivity to allergenic reactions and a massive exposure to conidia by inhalation. A. oryzae does not produce aflatoxins or any other cancerogenic metabolites. The absence of significant levels of mycotoxins in industrial products is regularly checked. We therefore consider A. oryzae an excellent host for the safe production of harmless products by recombinant strains.  相似文献   

20.
An immunoblot procedure for the strain-specific quantitative analysis of commercial Rhizobium inoculants was developed. The technique greatly reduced the time required for inoculant analysis. Correlation between immunoblot analysis and traditional plant nodule grow-out most-probable-number techniques was r = 0.90 for 16 commercial alfalfa inoculants tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号