首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term hoarding in the Paridae: a dynamic model   总被引:4,自引:3,他引:1  
Using stochastic dynamic programming we modeled the hoardingand foraging behavior of tits and chickadees, Pandas, that areresident in the boreal forest at high latitudes. Here autumnshave a rich supply of seeds and temperatures are relativelymild, while winters are cold with short days and a low foodsupply. We assumed that parids have a memory of limited durationand that forgotten seeds accumulate in a bank that adds to thegeneral food supply in the hoarder's territory. Our model predictsthat birds should start "high-intensity" hoarding in early autumn,but not before that. Because of mass-dependent costs the birdswill keep their fat levels low during the autumn. When winterarrives they will carry more body fat, both for the long winternights and to hedge against the large effects of weather variationsin winter. After increasing the fat level at the start of winter,fat should gradually increase even more, to compensate for thediminishing food supply. Most hoarding occurs in autumn as away of building up the supply of long-term stores. Remembered,or short-term caches, may hedge against stochastic events inthe environment. Even though conditions are not beneficial forhoarding in winter, the birds still stored in winter to maintainlarger short and long-term hoards if environmental variationincreased. Almost all time in winter that not was spent foragingwas spent perching, mainly to avoid predation  相似文献   

2.
We report the results of two field experiments assessing whether exposure to mobbing calls, which usually indicates the presence of a predator, elicits changes in risk perception as measured by the willingness of forest birds to enter or cross gaps in forest cover. In the first experiment, we tested the prediction that wintering black-capped chickadees,Poecile atricapilla , will travel less in open areas to seek food from a feeder during a simulated mobbing event than they will under control conditions. The number of visits to feeders decreased at increasing distances from forest edges (0-10 m) when mobbing calls were played. Mobbing calls increased the overall rate of visits to feeders, but lowered the rate of visits to feeders located at 10 m from forest edges. By contrast, when a stuffed merlin, Falco columbarius, was placed near the feeder, chickadees rarely visited the feeder, regardless of the distance to forest edge. In the second experiment, we tested the prediction that breeding male red-eyed vireos, Vireo olivaceus, would be less attracted to the song of a nearby red-eyed vireo after a playback of a mobbing event than after a ‘neutral’ sound stimulus, especially if they had to cross an open area. Vireos were as willing to enter or cross gaps in forest cover following exposure to mobbing calls, although they responded more frequently to conspecific song under forest cover than across gaps. Our results suggest that forest birds under cover assess the risk of a mobbing situation largely on the basis of the distance to the cause of mobbing. It follows that a trade-off between risk and reward may not occur with mobbing birds, unless mobbing occurs far outside forest cover and/or at very close range (<5 m) to a predator. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

3.
CapsuleIndividuals concentrated near forest edges in bigger social groups than in forest interiors and foraged more on pine cones which were more abundant there.

Aims To evaluate differences in food distribution between forest edges and forest interiors and their effects on the non-breeding flocking patterns of Coal Tit populations inhabiting mountain coniferous forests.

Methods We collected cone production data at forests edges and interiors in mountain pine forests located in the Pyrenees (northeast Iberian peninsula). At the same sites, we also quantified Coal Tit abundance, flocking patterns and foraging behaviour by means of paired bird surveys during autumn and early winter.

Results We recorded a larger abundance of pine cones available on trees along forest edges compared with forest interiors. Coal Tit groups were of bigger size along forest edges, although the number of social groups detected did not differ from forest interiors. Our observations on foraging behaviour supported the hypothesis that differences in flock sizes and overall abundances associated with distance to the edge are due to differences in the availability of pine cones and to the heavier use of these foraging substrates by birds along forest edges.

Conclusions Our results suggest that by changing food distribution, edge effects on pine cone production may be significantly involved in local changes in the social structure of the Coal Tit. An increase in resource heterogeneity and local population density may have important implications at a population level, such as favouring mobility of individuals searching for food resources and thus a transient life, and increasing the costs of territory defence to resident individuals.  相似文献   

4.
We tested for hormonal and behavioral differences between Carolina chickadees (Poecile carolinensis) taken from a disturbed (recently logged) forest, an undisturbed forest, or a residential site. We measured fecal corticosterone and body mass levels in the field, and fecal corticosterone, body mass, and caching behavior in an aviary experiment. In the field, birds from the disturbed forest exhibited significantly higher fecal corticosterone levels than birds from either the undisturbed forest or from the residential site. Birds from the disturbed forest also exhibited lower body mass than those from the undisturbed forest but higher body mass than those from the residential site. Our aviary results suggest that these physiological differences between field sites are the result of short-term responses to ecological factors: neither body mass nor fecal corticosterone levels varied between birds captured at different sites. Aviary sample sizes were sufficient to detect seasonal variation in fecal corticosterone (lowest in summer), body mass (highest in spring), and rate of gain in body mass (highest in winter). Under "closed-economy" aviary conditions (all food available from a feeder in the aviary), there were no site differences in the percent of seeds taken from the feeder that were cached. However, under "open-economy" conditions (food occasionally available ad libitum), significantly fewer seeds were cached by birds from the disturbed forest compared to the undisturbed or residential sites. On average, there was only a two-fold difference in population levels of fecal corticosterone. This difference is about the same as an increase in fecal corticosterone induced by a 2-h increase in food deprivation and cannot be considered to be an acute stress response to disturbance.  相似文献   

5.
When animals detect predators they modify their behavior to avoid predation. However, less is known about whether prey species modify their behavior in response to predator body and behavioral cues. Recent studies indicated that tufted titmice, a small songbird, decreased their foraging behavior and increased their calling rates when they detected a potential predator facing toward a feeder they were using, compared to a potential predator facing away from that feeder. Here, we tested whether related Carolina chickadees, Poecile carolinensis, were also sensitive not just to the presence of a predator model, but to its facial/head orientation. Although chickadees are closely related to titmice, recent studies in different populations suggest chickadees respond to risky contexts involving predators differently than titmice. We conducted two field studies near feeders the birds were exploiting. In Study One, a mask‐wearing human observer stood near the feeder. In Study Two, a model of a domestic cat was positioned near the feeder. In both studies, the potential threatening stimulus either faced toward or faced away from the feeder. Chickadees avoided the feeder more in both studies when the potential predator was present, and showed strongest feeder avoidance when the potential predator faced toward the feeder. Chickadee calling behavior was also affected by the facial orientation of the potential predator in Study 1. These results suggest that, like titmice, chickadees exhibit predation‐risk‐sensitive foraging and calling behavior, in relation to facial and head orientation of potential threats. These small birds seem to attend to the likely visual space of potential predators. Sensitivity to predator cues like behavior and body posture must become more central to our theories and models of anti‐predator behavioral systems.  相似文献   

6.
Landscape-dependent response to predation risk by forest birds   总被引:2,自引:0,他引:2  
Knowing how forest loss and associated fragmentation actually impact individual birds is essential to our understanding of consequences at the population level. We conducted a landscape-level experiment to test whether deforestation affects the trade-off between foraging and antipredatory behaviour of black-capped chickadees ( Poecile atricapilla ) in 24 landscapes (range 8–88% forest cover, 500-m radius) during two winters. At a field-forest edge in the centre of each landscape, we used the maximum distance ventured into the open by flocks to get sunflower seeds placed on the snow-covered fields, as a measure of risk-taking. In the more deforested landscapes, chickadees ventured farther (up to the maximum of 40 m) into the open. Edge density and proportion of conifers in the forest had no influence on risk-taking. However, where ad libitum food was available for a few weeks prior to the experiment (in 12 of the 24 landscapes), chickadees ventured four meters or less away from the forest edge, regardless of the level of deforestation. We conclude that landscape deforestation increases energy stress, which in turn promotes risk-taking, and may therefore increase winter mortality through greater exposure to predators.  相似文献   

7.
In winter, small birds should be fat to avoid starvation andlean and agile to escape predators. This means that they facea trade-off between the costs and benefits of carrying fat reserves.Every day they must gain enough fat to survive the coming night.Food-hoarding species can afford to carry less fat than nonhoardersbecause they can store energy outside the body. Furthermore, hoardersshould avoid carrying excessive fat during the day because theycan gain fat fast by retrieving food late in the afternoon.With no stored supplies, nonhoarders face more unpredictableaccess to food, and they should start gaining fat earlier inthe day. The predicted pattern is then that nonhoarders gainfat early and that hoarders gain fat late in the day. Recent fielddata show the opposite pattern: hoarders gain relatively morefat reserves in the morning than nonhoarders do. Using a dynamicmodel that mimics the conditions in a boreal winter forest,I investigated under which conditions this pattern will arise.The only assumption of those investigated that produced thispattern was to relax the effect of mass-dependent predation risk.I did this by introducing a limit under which fat reserves didnot affect predation risk. Hoarders then started the day bygaining fat in the morning. Later, when they had reached a safer(but still not risky) level, they switched to hoarding. Thepattern I searched would only occur if either not all food waspossible to store, or if retrieval gave less energy than foragingin good weather conditions. If I assumed that low levels ofbody fat also increased predation risk, hoarders would cachein the morning when they carried least fat. I discuss empiricalevidence for how body fat affects predation risk. In summary,the factors that produced the pattern I searched were a changein the predation-mortality function combined with restrictions onhoarding.  相似文献   

8.
Food availability for forest birds is a function of habitat type, forest management regime, and season. In winter, it is also impacted by variations in the weather. In the current study we assessed the food preferences of wild bird populations in two types of forest (spruce and beech) during the months of November 2010 to April 2011 in the Schwäbische Alb Biodiversity Exploratory, south-western Germany. Our aim was to investigate whether local bird communities preferred fat-rich, carbohydrate-rich or wild fruits and to determine how forest structure, seasonality and local weather conditions affected food preferences. We found higher bird activity in beech forests for the eleven resident species. We observed a clear preference for fat-rich food for all birds in both forest types. Snow cover affected activity at food stations but did not affect food preferences. Periods of extreme low temperatures increased activity.  相似文献   

9.
Food-storing birds lose a great deal of their stored food toother animals. We examined whether blackcapped chickadees (Parusairicapillus) modify their choice of cache sites using informationthat predicts cache loss. In experiment 1, birds learned toavoid caching at spatial locations where cache loss had previouslyoccurred, but they did not avoid caching near local color cuesthat predicted cache loss. Birds did not modify their generaluse of space in the aviary. Birds also learned to reduce searchingfor caches where spatial location predicted cache loss. Experiment2 confirmed the birds’ ability to discriminate among thespatial locations and the local color cues used in experiment1. In experiment 3, learning a food-rewarded approach to potentialcache sites occurred without any change in the choice of sitesfor caching. We discuss how chickadees selectively associatethe choice of cache site with its consequences, even over delaysof several hours between caching and cache recovery.  相似文献   

10.
Clearing of caldén (Prosopis caldenia) forests for agriculture and cattle raising in east-central La Pampa Province, central Argentina, has created a highly fragmented landscape, a condition that has resulted in adverse effects on birds in other forests, mainly through increased predation rates near forest edges. We evaluated bird nest predation rates using artificial nests, assessing the effects of forest fragment size, distance to the edge and nest height. We measured survival rate of 570 artificial nests located in trees, in bushes and on the ground, at different distances from the edge, in six forest fragments ranging in size from 2.1 to 117.6 ha, during two consecutive breeding seasons. Nest predation rates were significantly related with the number of days of exposition of the nest, nest height and distance to the edge, whereas fragment size and year of the experiment were not associated with predation rates. Ground nests were less likely to be predated than those located in bushes and trees. Predation rates decreased with the distance to the edge, showing a pattern consistent with the existence of an edge effect.  相似文献   

11.
Forest edges and habitat selection in birds: a functional approach   总被引:7,自引:0,他引:7  
Duncan McCollin 《Ecography》1998,21(3):247-260
Edge effects encompass a complex panoply of biotic and biotic phenomena across woodlan borders. I identify four main explanations which have been proposed to explain avian habital selection with respect to forest edges: 1) individualistic resource and patch use. 2) biotic interactions: 3) microclimate modification 4) changes in vegetation structure. In relates nest site location in woodlands relative to the edge to the proximity of food resources. It is shown that all other things being equal birds which are wholly dependent on resources found within woodlands will tend to avid forest edges. Woodland species dependent upon resources found in adjacent habitats will tend to be found near to edges to enable their exploitation. 2) identifies competition predation and brood parasitism as factor which have the potential to influence bird habitat selection near edges. 3) identifies microclimate modification as a potential influence which may are directly on nesting success or indirectly through its effects on food supply: 4) relates the activities of birds such as nesting feeding or Research on edge effects of birds in woodland has provided few practical recommendations to conservation managers. Forest edge management needs to take into account the multiple cause and defects which influence habitat selection at the edge and to target species of conservation concern.  相似文献   

12.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

13.
An important behavioural adaptation for animal species with variable or unpredictable food availability is storing food. Food availability for large field mouseApodemus peninsulae (Thomas, 1907) is not reliable. We conducted a series of tests with the large field mouse to determine food hoarding behaviour, response when their hoarded food was removed, and whether perishable foods were treated different than non perishable foods. The study was conducted in four semi-natural enclosures (4 × 3 × 1 m), established on the Donglingshan Mountain near Beijing, China. Thirteen large field mice were placed in enclosures and offered wild apricotPrunus armeniaca seeds and Liaodong oakQuercus liaotungensis acorns. Our results indicated that although large field mice hoarded seeds in larder and scatter patterns, they more frequently exhibited larder hoarding. Liadong oak acorns were generally consumed near the feeder, whereas apricot seeds were more frequently transported to the nest box. Only apricot seeds were scattered among hoard sites. When seeds were removed from hoarding sites the mice responded by taking increased amounts of seeds to their nest for larder and scatter hoarding. Hoarding sites were not randomly distributed throughout the enclosure.  相似文献   

14.
Eye size shows a large degree of variation among species, even after correcting for body size. In birds, relatively larger eyes have been linked to predation risk, capture of mobile prey, and nocturnal habits. Relatively larger eyes enhance visual acuity and also allow birds to forage and communicate in low‐light situations. Complex habitats such as tropical rain forests provide a mosaic of diverse lighting conditions, including differences among forest strata and at different distances from the forest edge. We examined in an Amazonian forest bird community whether microhabitat occupancy (defined by edge avoidance and forest stratum) was a predictor of relative eye size. We found that relative eye size increased with edge avoidance, but did not differ according to forest stratum. Nevertheless, the relationship between edge avoidance and relative eye size showed a nonsignificant positive trend for species that inhabit lower forest strata. Our analysis shows that birds that avoid forest edges have larger eyes than those living in lighter parts. We expect that this adaptation may allow birds to increase their active daily period in dim areas of the forest. The pattern that we found raises the question of what factors may limit the evolution of large eyes.  相似文献   

15.
Landscape-dependent distribution of northern forest birds in winter   总被引:2,自引:0,他引:2  
We evaluated the effects of landscape structure, along a broad gradient of deforestation (forest cover 8–88%, 500-m radius), on the spatial distribution of forest birds exposed to winter climatic conditions, in Quebec, Canada. Concurrently, we conducted an experiment to determine if these effects would persist if an unlimited source of energy, provided by food-supplementation, became available. We analyzed these effects at the population level, using count data of black-capped chickadees Poecile atricapillus , but also at the community level, referring to species richness. In one of the two years of the study, before food-supplementation began (November), "forest integrity" (a composite of forest cover and edge density) was positively associated with chickadee abundance and species richness. Each year, forest integrity was also positively associated with chickadee abundance and species richness in landscapes that were supplemented (December–February). However, in control landscapes, during the food-supplementation period, chickadee abundance and species richness tended to decrease with an increase in forest integrity. We argue that the more forested control landscapes facilitated winter emigration of juveniles and transient birds. Conversely, our results further suggest that, in the highly deforested and fragmented control landscapes, birds became "gap-locked" when rigorous winter climatic conditions exacerbated already existing movement constraints.  相似文献   

16.
We previously developed a model, based on the precepts of optimal patch use, to compare habitat quality both within and between environments. Here we illustrate the use of this model in a study estimating quality of winter habitats (deer yards) of white‐tailed deer Odocoileus virginianus near the northern limit of their range by following their foraging behaviour. We compare giving up densities (GUDs), the amount of food remaining in a patch when a forager ceases foraging there, with and without the presence of supplemental food in order to draw inferences about the relative quality either of habitats within an environment or of distinct environments. We use our model to evaluate the impact of alterations to the winter habitat of deer at two distinct sites that differed in their level of predation risk and food availability. The first site, the Mont Rigaud deer yard, was surrounded by farm land and gradually‐expanding suburbs. Predators were rare and food was available in winter either in farm fields or around private homes but deer browsing in the past had left little food in the forest. At the second site, the Calumet deer yard, deer experienced a higher predation risk and did not have access to supplemental food from farm fields or private homes. However, past browsing by deer had not drastically reduced food in the forest. We offered food to deer in four habitats per site (forest, forest edge, clearing, clearing edge) with four to six replicates per site and measured the GUDs after 24 h. Analysis of these data, interpreted according to our model, suggests that deer are more sensitive to metabolic costs at Mont Rigaud and food availability at Calumet; predation risk does not alter deer behaviour between the two sites. Within habitats, deer at Mont Rigaud reacted to clearings as though they imposed higher metabolic costs than the forest. They also reacted to an interaction in which missed food costs influenced GUD only when metabolic costs were not too high. Thus our model appears to provide a convenient tool for comparing habitat quality both within and between environments.  相似文献   

17.
18.
Bird communities in tropical forests are strongly affected by both patch area and habitat edges. The fact that both effects are intrinsically confounded in space raises questions about how these two widely reported ecological patterns interact, and whether they are independent or simply different spatial manifestations of the same phenomenon. Moreover, do small patches of secondary forest, in landscapes where the most sensitive species have gone locally extinct, exhibit similar patterns to those previously observed in fragmented and continuous primary forests? We addressed these questions by testing edge‐related differences in vegetation structure and bird community composition at 31 sites in fragmented and continuous landscapes in the imperilled Atlantic forest of Brazil. Over a two‐year period, birds were captured with mist nets to a standardized effort of 680 net‐hours at each site (~22 000 net‐hours resulting in 3381 captures from 114 species). We found that the bird community in patches of secondary forest was degraded in species composition compared to primary continuous forest, but still exhibited a strong response to edge effects. In fragmented secondary forests, edge and area effects also interacted, such that the magnitude of edge to interior differences on bird community composition declined markedly with patch size. The change in bird species composition between forest interiors and edges was similar to the change in community composition between large and small patches (because species had congruent responses to edge and area), but after controlling for edge effects community composition was no longer affected by patch area. Our results show that although secondary forests hold an impoverished bird community, ecological patterns such as area and edge effects are similar to those reported for primary forests. Our data provide further evidence that edge effects are the main drivers of area effects in fragmented landscapes.  相似文献   

19.
Mountain chickadees and juniper titmice from northern Utah were examined to determine metabolic and body-composition characteristics associated with seasonal acclimatization. These species use behavioral adaptations and nocturnal hypothermia, which reduce energetic costs. These adjustments could reduce the need for extensive metabolic adjustments typically found in small passerines that overwinter in cold regions. In addition, these species live at higher altitudes, which may also decrease metabolic acclimatization found in birds. Winter birds tolerated colder test temperatures than summer birds. This improved cold tolerance was associated with an increase in maximal thermogenic capacity or summit metabolism (M(sum)). Winter M(sum) exceeded summer M(sum) by 26.1% in chickadees and 16.2% in titmice. Basal metabolic rates (BMR) were also significantly higher in winter birds compared with summer birds. Pectoralis wet muscle mass increased 33.3% in chickadees and 24.1% in titmice in winter and paralleled the increased M(sum) and BMR. Dry mass of contour plumage increased in winter for both species and was associated with decreased thermal conductance in winter chickadees compared to summer chickadees. Chickadees and titmice show metabolic acclimatization similar to other temperate species.  相似文献   

20.
Habitat edges alter the diversity of avian communities and are often associated with higher rates of nest predation. However, most previous studies on habitat edges have been conducted along long linear corridors or at the transition between large field and forest patches in agricultural systems. Less is known about predation rates when the habitat edge is the result of a small interior forest opening. We assessed predation rates on artificial nests mimicking ground and shrub nesters in Northern Michigan forests perforated by small clearings used previously for oil and gas extraction. Nests were placed at varying distances from the edges of these clearings, and in similar spatial arrangements within unfragmented interior forest plots. Predation rates increased in forests near edges, but significant impacts were limited to shrub nests. Markings on predated clay eggs indicated that the type of predation also differed. Scratch marks were the most prevalent egg indentation, but eggs with poked holes were twice as common near the forest edge. The increase in the number of poked eggs suggests that a higher density of avian predators occurred in forests near an edge. Predation rates at forest edges did not vary by distance from the forest edge. Surveys of the avian community revealed differences between edge and interior forests: American Crows Corvus brachyrhynchos and Blue Jays Cyanocitta cristata, two species known to predate bird nests, were more common near edges. Our results suggest that small forest openings alter the avian community and may adversely impact reproductive output in some species. If the alteration of these processes results in population‐level impacts, small forest perforations should be avoided when possible and reforestation of abandoned well‐pads should be encouraged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号