首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 298 毫秒
1.
We describe fluorometric assays for two enzymes of the heme pathway, coproporphyrinogen oxidase and protoporphyrinogen oxidase. Both assays are based on measurement of protoporphyrin IX fluorescence generated from coproporphyrinogen III by the two consecutive reactions catalyzed by coproporphyrinogen oxidase and protoporphyrinogen oxidase. Both enzymatic activities are measured by recording protoporphyrin IX fluorescence increase in air-saturated buffer in the presence of EDTA (to inhibit ferrochelatase that can further metabolize protoporphyrin IX) and in the presence of dithiothreitol (that prevents nonenzymatic oxidation of porphyrinogens to porphyrins). Coproporphyrinogen oxidase (limiting) activity is measured in the presence of a large excess of protoporphyrinogen oxidase provided by yeast mitochondrial membranes isolated from commercial baker's yeast. These membranes are easy to prepare and are stable for at least 1 year when kept at -80 degrees C. Moreover they ensure maximum fluorescence of the generated protoporphyrin (solubilization effect), avoiding use of a detergent in the incubation medium. The fluorometric protoporphyrinogen oxidase two-step assay is closely related to that already described (J.-M. Camadro, D. Urban-Grimal, and P. Labbe, 1982, Biochem. Biophys. Res. Commun. 106, 724-730). Protoporphyrinogen is enzymatically generated from coproporphyrinogen by partially purified yeast coproporphyrinogen oxidase. The protoporphyrinogen oxidase reaction is then initiated by addition of the membrane fraction to be tested. However, when very low amounts of membrane are used, low amounts of Tween 80 (less than 1 mg/ml) have to be added to the incubation mixture to solubilize protoporphyrin IX in order to ensure optimal fluorescence intensity. This detergent has no effect on the rate of the enzymatic reaction when used at concentrations less than 2 mg/ml. Activities ranging from 0.1 to 4-5 nmol protoporphyrin formed per hour per assay are easily and reproducibly measured in less than 30 min.  相似文献   

2.
F Li  C K Lim    T J Peters 《The Biochemical journal》1987,243(3):863-866
An h.p.l.c. method is described for the assay of protoporphyrinogen oxidase activity in rat liver. A relatively pure protoporphyrinogen IX substrate was obtained by selectively removing any protoporphyrin IX unreduced by sodium amalgam on a small disposable cartridge packed with a strong anion-exchanger. The protoporphyrin IX formed was extracted with dimethyl sulphoxide/methanol (3:7, v/v) containing mesoporphyrin as the internal standard for separation and quantification by reversed-phase chromatography. The Km for protoporphyrinogen was 9.5 +/- 1.6 microM, and the enzyme activities were 0.59 +/- 0.11 nmol of protoporphyrin IX produced/min per mg of mitochondrial protein and 33.5 +/- 2.7 nmol protoporphyrin IX produced/min per g of liver tissue homogenate. The method is applicable to the determination of enzyme activity in small amounts of human liver biopsy.  相似文献   

3.
F Li  C K Lim    T J Peters 《The Biochemical journal》1986,239(2):481-484
An h.p.l.c. method was developed for the assay of coproporphyrinogen oxidase activity in rat liver. The protoporphyrinogen IX formed is completely oxidized to protoporphyrin IX for separation and quantification by reversed-phase chromatography with mesoporphyrin as the internal standard. The Km of coproporphrinogen oxidase is 1.01 +/- 0.23 microM. The activities are 4.07 +/- 0.40 nmol of protoporphyrin IX/h per mg of mitochondrial protein and 224 +/- 19 nmol of protoporphyrin IX/h per g of liver tissue homogenate. The method is sensitive enough for measuring enzyme activity in small amounts of human tissue from needle biopsy.  相似文献   

4.
Acifluorfen-tolerant callus lines of Solanum ptycanthum were isolated by stepwise selection. Growth of unselected lines was completely inhibited at 0.5 µM acifluorfen, while some selected lines grew at 8 µM acifluorfen. Twenty-two of 25 acifluorfen-tolerant callus lines regenerated shoots. Acifluorfen-tolerant S. ptycanthum callus lines differed in protoporphyrin IX content ranging from 2.0 to 43.5 nmole per 100 mg protein. As the concentration of acifluorfen increased, the amount of protoporphyrin IX accumulated increased. These results indicated that the possible site of action of acifluorfen was protoporphyrinogen oxidase which might be the molecular target of the herbicide within plant cell.  相似文献   

5.
The effect of acifluorfen-methyl on tetrapyrrole synthesis in greening chloroplasts of Cucumis sativus was examined. Formation of Mg-proto-porphyrin IX from δ-aminolevulinate was reduced 98% by 10 micromolar acifluorfen-methyl. Conversion of protoporphyrin IX to Mg-protoporphyrin IX was unaffected, but protoporphyrin IX synthesis from δ-aminolevulinate was blocked, indicating a site of inhibition prior to the Mg-chelatase. The enzymic oxidation of protoporphyrinogen IX to protoporphyrin IX was highly sensitive to acifluorfen-methyl, indicating that the site of action of the herbicide is the protoporphyrinogen oxidase. (© 1989 FMC Corporation. All rights reserved.)  相似文献   

6.
Coproporphyrinogen oxidase, the sixth enzyme in the biosynthetic heme pathway, catalyzes the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX. A reversed-phase high pressure liquid chromatography method was developed to measure coproporphyrinogen oxidase enzymatic activity in rat liver. With this method, the separation, identification and quantification of coproporphyrin III (oxidized substrate) and protoporphyrin IX (oxidized product) present in the assays could be carried out with no need of derivatization and in less than 15 min. Rat and human liver coproporphyrinogen oxidase basal activities determined using this method were 0.41+/-0.05 nmol of protoporphyrin IX/h per mg of hepatic protein and 0.87+/-0.06 protoporphyrin IX/h per mg of hepatic protein, respectively. Kinetic studies showed that optimum pH for rat CPGox is 7.3, and that its activity is linear in the range of protein concentrations and incubation times assayed. The present paper describes a sensitive, specific and rapid fluorometric high performance liquid chromatography method to measure coproporphyrinogen oxidase, which could be applied to the diagnosis of human coproporphyria, and which is also suitable for the study of lead and other metal poisoning that produce alterations in this enzymatic activity.  相似文献   

7.
An isocratic high-performance liquid chromatographic method has been developed to determine ciprofloxacin levels in chinchilla plasma and middle ear fluid. Ciprofloxacin and the internal standard, difloxacin, were separated on a Keystone ODS column (100 × 2.1 mm I.D., 5 μm Hypersil) using a mobile phase of 30 mM phosphate buffer (pH 3), 20 mM triethylamine, 20 mM sodium dodecyl sulphate—acetonitrile (60:40, v/v). The retention times were 3.0 min for ciprofloxacin and 5.2 min for difloxacin. This fast, efficient protein precipitation procedure together with fluorescence detection allows a quantification limit of 25 ng/ml with a 50 μl sample size. The detection limit is 5 ng/ml with a signal-to-noise ratio of 5:1. Recoveries (mean ± S.D., n = 5) at 100 ng/ml in plasma and middle ear fluid were 89.4 ± 1.2% and 91.4 ± 1.6%, respectively. The method was evaluated with biological samples taken from chinchillas with middle ear infections after administering ciprofloxacin.  相似文献   

8.
The nitrodiphenyl ether herbicide 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitroacetophenone oxime-O-(acetic acid, methyl ester) (DPEI) induced an abnormal accumulation of protoporphyrin IX in darkness in the green alga Chlamydomonas reinhardtii, as determined by high-performance liquid chromatography and spectrofluorimetry. It also inhibited the increase in cell density of the alga in light-grown cultures with an I50 (concentration required to decrease cell density increase to 50% of the noninhibited control value) of 0.16 μm. The relative ability of four peroxidizing diphenyl ether herbicides to cause tetrapyrrole accumulation in C. reinhardtii correlated qualitatively with their ability to inhibit the increase in cell density in light-grown cultures. The purified S(−) enantiomer of the optically active phthalide DPE 5-[2-chloro-4-(trifluoromethyl)phenoxy]-3-methylphthalide (DPEIII), which has greater herbicidal activity than the R(+) isomer, induces a 4- to 5-fold greater tetrapyrrole accumulation than the R(+) isomer. The I50 for inhibition of increase in cell density in light-grown cultures of C. reinhardtii by the S(−) isomer (0.019 μm) is less than 25% of that for the R(+) isomer. DPEIII inhibits protoporphyrinogen IX oxidase activity in pea (Pisum sativum) etioplast lysates, with the S(−) enantiomer showing considerably greater potency than the R(+) isomer and the racemic mixture showing a potency intermediate between the two. The results indicate that the site at which DPEs inhibit protoporphyrinogen IX oxidase shows chiral discrimination and provide further evidence for the link between inhibition of this enzyme, protoporphyrin IX accumulation, and the phytotoxicity of DPE herbicides.  相似文献   

9.
The terminal three steps in haem biosynthesis are the oxidative decarboxylation of coproporphyrinogen III to protoporphyrinogen IX, followed by the six-electron oxidation of protoporphyrinogen to protoporphyrin IX, and finally the insertion of ferrous iron to form haem. Interestingly, Nature has evolved distinct enzymic machinery to deal with the antepenultimate (coproporphyrinogen oxidase) and penultimate (protoporphyrinogen oxidase) steps for aerobic compared with anaerobic organisms. The terminal step is catalysed by the enzyme ferrochelatase. This enzyme is clearly conserved with regard to a small set of essential catalytic residues, but varies significantly with regard to size, subunit composition, cellular location and the presence or absence of a [2Fe-2S] cluster. Coproporphyrinogen oxidase and protoporphyrinogen oxidase are reviewed with regard to their enzymic and physical characteristics. Ferrochelatase, which is the best characterized of these three enzymes, will be described with particular emphasis paid to what has been learned from the crystal structure of the Bacillus subtilis and human enzymes.  相似文献   

10.
11.
We have developed a rapid and precise method for glutathione quantitation by capillary electrophoresis, that allows a low amount of both redox forms to be measured. Small fragments of rat heart or liver tissues (20 mg wet weight) and the corresponding mitochondria (1 mg protein) were homogenized in 1% perchloric acid and the acid-soluble phase ultrafiltered by centrifugation with a microconcentrator (Mr cut-off 3000 Da). The analysis was performed at a constant temperature (28°C) using a Beckman P/ACE System 2100, equipped with a UV absorbance detector set to 200 nm. The limit of quantitation in heart tissue was 1.8 μM for GSH and 1.2 μM for GSSG. Myocardial concentrations of GSH and GSSG were 8.1±2.6 and 0.45±0.15 (nmol/mg protein±S.D.), respectively. The ratio of GSH to GSSG was 17.8±1.3 for heart tissue, whereas it was much higher (>100) in the mitochondria. An oxidative stress decreased the myocardial tissue GSH/GSSG ratio, indicating that the CE analysis of both glutathione forms is also a useful method to study biological redox modification.  相似文献   

12.
Jacobs JM  Jacobs NJ 《Plant physiology》1993,101(4):1181-1187
We have investigated the formation of porphyrin intermediates by isolated barley (Hordeum vulgare) plastids incubated for 40 min with the porphyrin precursor 5-aminolevulinate and in the presence and absence of a diphenylether herbicide that blocks protoporphyrinogen oxidase, the enzyme in chlorophyll and heme synthesis that oxidizes protoporphyrinogen IX to protoporphyrin IX. In the absence of herbicide, about 50% of the protoporphyrin IX formed was found in the extraplastidic medium, which was separated from intact plastids by centrifugation at the end of the incubation period. In contrast, uroporphyrinogen, an earlier intermediate, and magnesium protoporphyrin IX, a later intermediate, were located mainly within the plastid. When the incubation was carried out in the presence of a herbicide that inhibits protoporphyrinogen oxidase, protoporphyrin IX formation by the plastids was completely abolished, but large amounts of protoporphyrinogen accumulated in the extraplastidic medium. To detect extraplastidic protoporphyrinogen, it was necessary to first oxidize it to protoporphyrin IX with the use of a herbicide-resistant protoporphyrinogen oxidase enzyme present in Escherichia coli membranes. Protoporphyrinogen is not detected by some commonly used methods for porphyrin analysis unless it is first oxidized to protoporphyrin IX. Protoporphyrin IX and protoporphyrinogen found outside the plastid did not arise from plastid lysis, because the percentage of plastid lysis, measured with a stromal marker enzyme, was far less than the percentage of these porphyrins in the extraplastidic fraction. These findings suggest that of the tetrapyrrolic intermediates synthesized by the plastids, protoporphyrinogen and protoporphyrin IX, are the most likely to be exported from the plastid to the cytoplasm. These results help explain the extraplastidic accumulation of protoporphyrin IX in plants treated with photobleaching herbicides. In addition, these findings suggest that plastids may export protoporphyrinogen or protoporphyrin IX for mitochondrial heme synthesis.  相似文献   

13.
Manohara MS  Tripathy BC 《Planta》2000,212(1):52-59
Subplastidic preparations from cotyledons of cucumber (Cucumis sativus L.) were tested for their ability to synthesize protoporphyrin IX from the substrate 5-aminolevulinic acid. Envelope or thylakoid membranes failed to synthesize protoporphyrin IX from the substrate 5-aminolevulinic acid. Stromal preparations synthesized a very low amount of protoporphyrin IX. In a reconstitution experiment using stroma + envelope membranes, protoporphyrin IX synthesis from 5-aminolevulinic acid was enhanced by 660% over that of stroma alone. However, when thylakoids were added to the stroma + envelope mixture, protoporphyrin IX synthesis from 5-aminolevulinic acid was completely inhibited. In the reconstituted stroma + envelope membrane mixture, the reducing agent dithiothreitol enhanced the protoporphyrin IX-synthesizing ability and completely abolished the inhibition of protoporphyrin IX synthesis by thylakoids. This suggested that the oxidizing agents usually associated with the thylakoid membranes inhibited protoporphyrin IX biosynthesis and the inhibition was alleviated by the reducing power of dithiothreitol. This study exposes the weakness of in vitro reconstitution experiments in mimicking the in vivo-conditions. Addition of ATP stimulated protoporphyrin IX synthesis by 50% in the supernatant fraction of chloroplast lysate. This ATP-induced stimulation of protoporphyrin IX synthesis was due to the enhancement of the activities of uroporphyrinogen decarboxylase and protoporphyrinogen oxidase, involved in tetrapyrrole biosynthesis. The ATP-induced stimulation of porphyrinogen oxidase activity was an energy-dependent reaction. Received: 21 March 2000 / Accepted: 9 May 2000  相似文献   

14.
Ferrochelatase was purified to homogeneity from yeast mitochondrial membranes and found to be a 40-kDa polypeptide with a pI at 6.3. Fatty acids were absolutely necessary to measure the activity in vitro. The Michaelis constants for protoporphyrin IX (9 x 10(-8) M), ferrous iron (1.6 x 10(-7) M), and zinc (9 x 10(-6) M) were determined on purified enzyme preparations in the presence of dithiothreitol. However, the Km for zinc was lower when measured in the absence of dithiothreitol (K-m(Zn2+) = 2.5 x 10(-7) M, Km(protoporphyrin) unchanged). The maximum velocities of the enzyme were 35,000 nmol of heme/h/mg of protein and 27,000 nmol of zinc-protoporphyrin/h/mg of protein. Antibodies against yeast ferrochelatase were raised in rabbits and used in studies on the biogenesis of the enzyme. Ferrochelatase is synthesized as a higher molecular weight precursor (Mr = 44,000) that is very rapidly matured in vivo to the Mr = 40,000 membrane-bound form. This precursor form of ferrochelatase was immunoprecipitated from in vitro translation (in a rabbit reticulocyte lysate system) of total yeast RNAs. The antibodies were used to characterize two yeast mutant strains deficient in ferrochelatase activity as being devoid of immunodetectable protein in vivo and ferrochelatase mRNA in vitro translation product. The N-terminal amino acid sequence of the purified protein has been established and was found to be frayed.  相似文献   

15.
A simple high-performance liquid chromatography (HPLC) assay for the simultaneous determination of guanase and aspartate aminotransferase (AST) activities in a single serum sample is described. The method is based on direct detection of enzymatically formed products xanthine and glutamate, respectively. The procedure is sensitive, precise (C.V. below 2% for guanase and 3% for AST), suitable for routine purposes and requires only 100 μl of sample. Kinetic measurements have shown the guanase activity to have an apparent Michaelis constant of 24.5 μM and the AST activity of 11.1 and 0.18 mM for aspartate and oxoglutarate, respectively, at 37°C in Tris-HCl buffer (pH 7.5).  相似文献   

16.
It is now generally accepted that protoporphyrinogen oxidase is the target-enzyme for diphenyl-ether-type herbicides. Recent studies [Camadro, J-M., Matringe M., Scalla, R. & Labbe, P. (1991) Biochem. J. 277, 17-21] have revealed that in maize, diphenyl ethers competitively inhibit protoporphyrinogen oxidase with respect to its substrate, protoporphyrinogen IX. In this study, we show that, in purified pea etioplast, [3H]acifluorfen specifically binds to a single class of high-affinity binding sites with an apparent dissociation constant of 6.2 +/- 1.3 nM and a maximum density of 29 +/- 5 nmol/g protein. [3H]Acifluorfen binding reaches equilibrium in about 1 min at 30 degrees C. Half dissociation occurs in less than 30 s, indicating that the binding is fully reversible. The specificity of [3H]acifluorfen binding to protoporphyrinogen oxidase is examined. [3H]Acifluorfen binding is inhibited by all the peroxidizing molecules tested. The phthalimide derivative, N-(4-chloro-2-fluoro-5-isopropoxy)phenyl-3,4,5,6-tetra hydrophthalimide, exerts a mixed-competitive inhibition on this binding. The effects of all these molecules on the binding of [3H]acifluorfen are tightly linked to their capacity to inhibit pea etioplast protoporphyrinogen oxidase activity. Furthermore, protoporphyrinogen IX, the substrate of the reaction catalyzed by protoporphyrinogen oxidase, was able to competitively inhibit the binding of [3H]acifluorfen. In contrast, protoporphyrin IX, the product of the reaction, did not inhibit this binding. All these results provide clear evidence that in pea etioplasts, [3H]acifluorfen exclusively binds to protoporphyrinogen oxidase, that the protoporphyrinogen oxidase inhibitors tested so far bind to the same region of the enzyme and that this region overlaps the catalytic site of the enzyme.  相似文献   

17.
A new high-performance liquid chromatograhic procedure for simultaneous determination of pyrazinamide (PZA) and its three metabolites 5-hydroxypyrazinamide (5-OH-PZA), pyrazinoic acid (PA), and 5-hydroxypyrazinoic acid (5-OH-PA), in rat urine was developed. 5-OH-PZA and 5-OH-PA standards were obtained by enzymatic synthesis (xanthine oxidase) and checked by HPLC and GC–MS. Chromatographic separation was achieved in 0.01 M KH2PO4 (pH 5.2), circulating at 0.9 ml/min, on a C18 silica column, at 22°C. The limits of detection were 300 μg/l for PZA, 125 μg/l for PA, 90 μg/l for 5-OH-PZA and 70 μg/l for 5-OH-PA. Good linearity (r2>0.99) was observed within the calibration ranges studied: 0.375–7.50 mg/l for PZA, 0.416–3.33 mg/l for PA, 0.830–6.64 mg/l for 5-OH-PZA and 2.83–22.6 mg/l for 5-OHPA. Accuracy was always lower than ±10.8%. Precision was in the range 0.33–5.7%. The method will constitute a useful tool for studies on the influence of drug interactions in tuberculosis treatment.  相似文献   

18.
A new ion-pair high-performance liquid chromatographic method with column-switching has been developed for the determination of paraquat in human serum samples. The diluted serum sample was injected onto a precolumn packed with LiChroprep RP-8 (25-40 μm) and polar serum components were washed out by 3% acetonitrile in 0.05 M phosphate buffer (pH 2.0) containing 5 mM sodium octanesulfonate. After valve switching to inject position, concentrated compounds were eluted in the back-flush mode and separated on an Inertsil ODS-2 column with 17% acetonitrile in 0.05 M phosphate buffer (pH 2.0) containing 10 mM sodium octanesulfonate. The total analysis time per sample was about 30 min and mean recovery was 98.5±2.8% with a linear range of 0.1–100 μg/ml. This method has been successfully applied to serum samples from incidents by paraquat poisoning.  相似文献   

19.
20.
We developed a simple capillary electrophoresis (CE) method to measure nitrite and nitrate concentrations in sub-microliter samples of rat airway surface liquid (ASL), a thin (10–30 μm) layer of liquid covering the epithelial cells lining the airways of the lung. The composition of ASL has been poorly defined, in large part because of the small sample volume (1–3 μl per cm2 of epithelium) and difficulty of harvesting ASL. We have used capillary tubes for ASL sample collection, with microanalysis by CE using a 50 mM phosphate buffer (pH 3), with 0.5 mM spermine as a dynamic flow modifier, and direct UV detection at 214 nm. The limit of detections (LODs), under conditions used, for ASL analysis were 10 μM for nitrate and 30 μM for nitrite (S/N=3). Nitrate and nitrite were also measured in rat plasma. The concentration of nitrate was 102±12 μM in rat ASL and 70±1.0 μM in rat plasma, whereas nitrite was 83±28 μM in rat ASL and below the LOD in rat plasma. After instilling lipopolysaccharide intratracheally to induce increased NO production, the nitrate concentration in ASL increased to 387±16 μM, and to 377±88 μM in plasma. The concentration of nitrite increased to 103±7.0 μM for ASL and 138±17 μM for plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号