首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W T Abed 《Life sciences》1988,43(22):1831-1836
The threshold of the generalized clonic convulsions induced by intravenous infusion of pentylenetetrazol (PTZ) was significantly increased by the intraperitoneal administration of noradrenaline (NA) neurotoxin, 6-hydroxydopamine, which produced no changes in the levels of catecholamines in discrete areas of rat brain, but the effect was accompanied by spinal depletion of NA. Moreover, the anticonvulsant effects of phenobarbitone (PB) and diphenylhydantoin (DPH) against PTZ convulsions were also significantly increased in the animals pretreated with 6-OHDA. These results suggest that the observed elevation of PTZ convulsive threshold and the potentiation of anticonvulsant activity of PB and DPH in 6-OHDA treated rats were possibly mediated through spinal cord depletion of NA.  相似文献   

2.
Activity of Na, K -ATPase, acetylcholinesterase (AChE) and glutamic acid decarboxylase (GAD) in the fractions of the rat brain and spinal cord tissue were studied in rats during a single electroshock (ES) and 5 and 30 minutes after it. GAD activity of the synaptosome fraction was shown to decrease insignificantly, but activity of AChE, Na, K -ATPase and possibly of proteolytic enzymes increased 5 minutes after electroshock and became normal in 30 minutes. It is supposed that the revealed inhibition of Na, K -ATPase activity in the "synaptosomes" of the rat brain cortex could be of pathogenetic significance in the origination of the convulsive process.  相似文献   

3.
The changes in AChE activity and protein content following cold or heat exposure and heat death were determined in the brain and spinal cord of both Rana ridibunda and Chalcides ocellatus. Cold exposure (10 degrees C) caused a decrease in the enzyme activity and protein content of both animals. Exposure to heat (36-40 degrees C) increased markedly the AChE activity and the amount of protein in the two experimental animals. Heat death was found to be associated with a prominent decrease in enzyme activity and the protein level of the brain and spinal cord of the two poikilotherms.  相似文献   

4.
The activities of Glutamate decarboxylase (GAD) and Gamma aminobutyric acid (GABA) were studied in three regions of rat brain in heightened neuronal activity resulting in convulsions by Leptazol. These enzymes were studied in preconvulsive, convulsive and post convulsive phases. The activity of GAD decreases significantly in the preconvulsive phase in all the three regions of brain followed by a significant increase during the convulsive and post convulsive phase in cerebral cortex and cerebellum. The activity of GABA-T decreases maximal during the preconvulsive phase followed by convulsive phase. The activity of this enzyme tended to increase to control values when the postconvulsive phase was reached. Therefore, it is suggested that the concomitant decrease of GAD activity and GABA concentration, is probably an important factor in the onset of convulsions.  相似文献   

5.
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity measured in the ventral and dorsal part of the dog spinal cord (L6-S2) and in the stumps of the sciatic nerve 5, 10, 15 and 21 days after its transection were compared with the corresponding activities in the intact contralateral nerve and in sham-operated animals. AChE was also examined histochemically. Changes in the enzyme activities in the central nerve stump were correlated with activity changes in the spinal cord. In the central nerve stump, a marked (25%) increase in AChE activity was found on the fifth day after transection, but by the 21st day it fell below control value levels; up to the 15th day it showed good correlation with AChE activity in the ventral spinal cord. Histochemically, pronounced reduction of enzymatic activity was found in the ipsilateral part of the spinal cord. On the 15th day, ChAT activity in the ventral spinal cord was also significantly decreased and the accumulation of the enzyme in the central nerve stump was negligible. On the contrary, at the last 21-day interval examined, a significant increase in ChAT activity and a nonsignificant increase in AChE activity was found in the spinal cord, but their activities in the central nerve stump were decreased. In the degenerated peripheral nerve stump ChAT activity dropped by an average of 99% and AChE activity by 48% during the first 15 days after transection but, on the 21st day, AChE activity was 22% higher than at the preceding interval.  相似文献   

6.
Previous data (1) have shown that L-DOPA increases the duration of the clonic phase of post-decapitation convulsions (PDC) in mice. It was suggested that this effect is produced by depleting 5-hydroxytryptamine (5-HT) in the inhibitory bulbospinal pathways and thus enhancing reflex activity in the spinal cord. If this were true then L-DOPA administration should not influence clonic PDC in animals whose 5-HT pathways were destroyed. We therefore tested the effects of L-DOPA on mice 3 weeks after pretreatment with the 5-HT neurotoxin, 5,6-dihydroxytryptamine (5, 6-DHT) (50 μg/kg, intracerebroventricularly). All mice were given the peripheral decarboxylase inhibitor, Ro 4-4602. 5,6-DHT halved the brain 5-HT levels and significantly increased the duration of clonic PDC. The administration of L-DOPA (320 mg/kg i.p.) to 5,6 DHT treated mice did not produce any further significant increases in duration. The administration of 5-hydroxytryptophan (5-HTP) (100 mg/kg, i.v.) to 5,6-DHT treated mice, however, increased 5-HT to above control levels and reduced convulsions to control levels. Administration of both 5-HTP and L-DOPA to 5,6-DHT treated mice resulted in 5-HT levels and convulsion times which were also not significantly different from the controls. These data give additional indication that intact 5-HT nerve terminals are necessary for L-DOPA to prolong the duration of clonic PDC.  相似文献   

7.
Activities of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in the ventral spinal cord, ventral spinal roots and in the central and peripheral stumps of the sciatic nerve transected under conditions of partial ischemia (produced by aortic ligation just below the renal arteries) were compared to those obtained under intact blood supply in time intervals 5, 10, or 15 days after surgery. The significant increase of ChAT activity in the central part of the sciatic nerve following 15 days of partial ischemia correlated with less significant elevation of ChAT in the ventral spinal cord. The changes of AChE activity were not significant during partial ischemia. ChAT in the peripheral stump of the sciatic nerve following 5 days of partial ischemia was preserved by 40% and AChE by 20% more than under normal blood supply. On the contrary, in the next 5 days interval losses of enzymes activity in the degenerating nerve were greater. ChAT was almost totally inactivated whereas 50% of AChE activity was preserved until the end of period examined.  相似文献   

8.
Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities were measured in 13 sequential 2 ml aliquots of cerebrospinal fluid (CSF) obtained by lumbar puncture from 7 young and 7 elderly healthy normal subjects. The slopes of the rostrocaudal gradients of AChE and BChE were calculated and compared to those of total protein concentration and the major dopaminergic metabolite homovanillic acid (HVA), for which a pronounced rostrocaudal gradient (with highest concentrations of HVA in more rostral CSF) is consistent with HVA originating primarily from the brain. AChE activity was higher in more caudal fractions of young, but not elderly subjects and there was a significant difference between the mean AChE gradient slopes in the young and old groups. These results suggest that the spinal cord makes an important contribution to AChE activity in lumbar CSF. Furthermore, the absence of a negative AChE gradient in elderly subjects may be the result of a greater rate of entry of cerebral AChE into CSF, possibly as a consequence of an increased ventricular surface area and shorter diffusion distances in atrophic elderly brains. In contrast to AChE, BChE activity and total protein concentrations were higher in more caudal CSF fractions of not only young but also old subjects. In addition, there was a significant correlation between the gradient slopes of BChE activity and total protein concentrations, suggesting that the majority of BChE activity in lumbar CSF derives from the same source as the majority of total protein, namely plasma. The diffuse (i.e. brain and spinal cord) origin of AChE in lumbar CSF would explain the relatively modest changes in lumbar CSF AChE activity in diseases involving certain central cholinergic systems, most notably Alzheimer's disease.  相似文献   

9.
It was shown that the phenomenon of inactivation of Na, K-ATPase of the non-purified fraction of the rat cortical synaptosomes under electroshock may be related to "modification" of the potassium active center of the enzyme. The anticonvulsant diazepam injected intramuscularly also inhibits Na, K-ATPase of the cerebral membranes. However, in subsequent electrical stimulation of the brain the drug activates Na, K-ATPase as compared to controls. Diazepam also abolishes clonic convulsions induced by electrical stimulation of the brain. At the same time it does not eliminate compensatory shifts in the activity of acetyl-cholinesterase of the rat cerebral and spinal synaptosomes, characteristic of electroshock. The results are discussed from the standpoint that inhibition of the activity of Na, K-ATPase of the nerve endings membranes may underlie the pathogenetic mechanism of the convulsive activity.  相似文献   

10.
The activities of glutaminase, glutamine synthetase (GS), arginase and ornithine amino transferase (orn-T) were studied in three regions of rat brain in heightened neuronal activity by producing convulsions by leptazol. These enzymes were studied in preconvulsive, convulsive and postconvulsive phases. Glutaminase activity was found to increase in all the three regions in the preconvulsive and convulsive phases. GS activity decreased in the preconvulsive phase but rose gradually to the control level when the postconvulsive phase was reached. The activity of arginase decreased in the cerebellum in preconvulsive and convulsive phases. However, in the cerebral cortex there was a decrease in the activity of this enzyme only in the convulsive phase. The results suggest that glutamine acts more likely as a precursor for the neurotransmitter pool of glutamate, while ornithine serves more as a precursor for the neurotransmitter pool of GABA.  相似文献   

11.
Abstract— The fraction that sediments between 2 × 105 g -min and 6 × 106 g -min from dilute dispersions of rat brain in 0.32 m -sucrose is a microsomal fraction with very little contamination by myelin. A crude microsomal fraction prepared in the same way from rat spinal cord contains more myelin than microsomes. Centrifugation of the crude microsomal fraction in 0.85 m -sucrose gave a floating fraction, an infranatant fraction (purified microsomes) and a small pellet. The purified microsomes contained very little myelin as judged by electron microscopy and polyacrylamide gel electrophoresis. The lipid composition resembled that of spinal cord myelin except that the purified microsomes contained relatively less cholesterol and ethanolamine plasmalogens. The content of galactolipids was much greater in spinal cord microsomes than in brain microsomes. The spinal cord CDP-ethanol-amine:diglyceride ethanolaminephosphotransferase activity (EC 2.7.8.1) was concentrated in the purified microsomes.
A spinal cord myelin fraction isolated from the 2 × 105 g -min pellet was quite pure as judged by electron microscopy, enzyme activities and polyacrylamide gel electrophoresis. No NADPH-cyto-chrome c reductase activity (EC 1.6.2.3) could be detected in the purified myelin. The ethanolaminephosphotransferase specific activity was about 5% of that found in the purified microsomal fraction. The protein content was 25% by weight for spinal cord myelin and 31% for brain myelin. Of the total spinal cord 2',3'-cyclic nucleotide-3'-phosphohydrolase activity, 16% was lost from the crude myelin during purification, 21% was recovered in the purified myelin, and 11% was found in the floating fraction from the crude microsomes. The purified myelin and microsomal fractions from spinal cord were relatively pure. Additional myelin was recovered in the floating fraction from the crude microsomes.  相似文献   

12.
Abstract: Acetylcholinesterase (AChE) was extracted in a high-saline medium from gastrocnemius muscles of rat embryos and young rats aged 14 days'gestation to 40 days post partum. The molecular forms of the enzyme were separated by low-salt precipitation, followed by velocity sedimentation. During gestation, all molecular forms increased in activity, particularly the 16 S (A12) form. During the first 2 weeks of life, there was a large increase in the activity of soluble AChE (G forms), whilst the activity of insoluble AChE (A forms) was reduced. Denervation of the muscle reversed the change in the relative proportions of the molecular forms. The embryonic pattern of activities of AChE forms persisted in cultures of myotubes obtained at 20 days'gestation and maintained in the absence of spinal cord. When myotubes were maintained in medium previously conditioned by developing spinal cord explants, 16 S AChE declined while the soluble (4 and 6 S) forms increased in activity in a manner resembling that seen in early postnatal muscles in vivo . β-Endorphin (β-EP) immunoreactivity was detected in the spinal cord-conditioned medium and was identified by HPLC and ion-exchange chromatography as β-EP-(l–31) plus its shortened and N -acetylated forms. Cultivation of myotubes in the presence of synthetic camel β-EP resulted in a reversible change in the pattern of AChE forms which was similar to that seen with spinal cord-conditioned medium. These studies provide evidence for the neuroregulation of AChE A and G forms in immature skeletal muscle. A major candidate for this role is β-EP, produced and released by developing spinal cord.  相似文献   

13.
Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activity were determined in 23 selected parts of the dog CNS and 4 parts of the peripheral nervous system. Maximum ChAT activity was found in the caudate nucleus and the ventral roots of the spinal cord. High activity was also present in the thalamus, the pons, the cerebral cortex, the medulla oblongata, the ventral spinal horns and the sciatic nerve. The lowest activity was measured in the cerebellum, the dorsal cord roots and the spinal ganglia. Maximum AChE activity was found in the caudate nucleus and the cerebellum. Relatively high activity was also present in the thalamus, the pons, the medulla oblongata, the grey matter of the spinal cord and the spinal ganglia. The lowest AChE activity was measured in the ventral and dorsal spinal roots.  相似文献   

14.
Changes in GABA content of various brain areas during different stages of picrotoxin-induced seizures and following pretreatment with the anti-convulsants phenobarbital andγ-acetylenic GABA were studied. Picrotoxin (6mg/kg) produced clonic/tonic convulsions associated with a 34% reduction in GABA content of the sensory motor cortex. A reduction of 24% was observed 1 min before the onset of seizure and the reduction in GABA content was reversible 20 min after the convulsion. No significant changes were observed in the cerebellum or spinal cord/medulla oblongata. Pretreatment with phenobarbital (100mg/kg) delayed the onset of convulsion and decreased the mortality rate without causing any change in GABA content at the pre-convulsive, convulsive or post-convulsive stages.γ-Acetylenic GABA (100mg/kg) has elevated GABA levels in different areas of the brain by 2–3-fold after 60 min treatment. This increase was reduced by 44% during the onset of picrotoxin-induced seizures. Picrotoxin convulsion can occur in the presence of normal, reduced or even elevated brain GABA content. The only consistent factor is a one-third reduction in GABA content before the onset of seizure.  相似文献   

15.
Yang P  Ying DJ  Song L  Sun JS 《生理学报》2003,55(4):428-434
采用大鼠坐骨神经切断损伤模型,行神经外膜端端对线缝合,术中依不同组别,动物于神经缝合处远端0.5cm处分别注射人的正义和反义bcl-2重组腺病毒(Ad/s-bcl-2、Ad/as-bcl-2),报道基因重组腺病毒(Ad/lacZ)和生理盐水。术后48h,7d,15d和30d常规灌注固定大鼠,取L4-L6脊髓节段,应用X-gal染色、bel-2原位杂交和免疫组化染色、TUNEL染色以及乙酰胆碱酯酶(AChE)组织化学染色方法,观察到外源基因能在脊髓中表达,同时外源性Ad/s-bcl-2能显著减少L4到L6节段脊髓前角运动神经元凋亡的数目,减少脊髓前角运动神经元中因坐骨神经切断导致的AChE活性的降低幅度,并加快其恢复。而Ad/as-bcl-2可显著增加坐骨神经切断诱导的脊髓前角运动神经元凋亡数目以及AChE活性降低幅度,并延缓其恢复。这些观察结果表明,外源性bcl-2能保护周围神经切断后引起的脊髓运动神经元损伤。  相似文献   

16.
Abstract: The study of Arrhenius plots for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activity from the rat brain and spinal cord revealed that in contrast to AChE, which exhibited biphasic Arrhenius plots with a distinct break (transition temperature) at about 16–18°C, BuChE showed no evidence of discontinuity and a higher activation energy in the physiological range of temperature. The results indicate lack of lipid-protein interaction in the case of BuChE of the CNS tissue. It is inferred that BuChE, in contrast to AChE, is not bound in any significant way to cellular membranes of the CNS tissue.  相似文献   

17.
Protein kinase C (PKC) activity was examined in the CNS of the newt Pleurodeles waltlii undergoing regeneration after limb amputation. In the spinal cord and brain of control newts, the level of PKC activity was virtually the same for the cytosolic and the particulate fractions. At days 7 and 14 after amputation of two limbs, a twofold increase in overall PKC activity occurred in the spinal cord and accounted for increased membrane-bound activity, while cytosolic activity was not significantly impaired. In contrast, overall PKC activity was not affected in brain. However, a twofold increase in the brain particulate fraction occurred at day 14 while cytosolic activity decreased proportionately. Similar alterations were observed in newts undergoing one or multiple limb amputations. Such changes in PKC activity neither occurred in the CNS of newt after limb denervation nor in the CNS of limb amputated frog Rana temporaria, an Amphibian which is unable to regenerate. Taken together, these results provide evidence that PKC of the CNS is involved in the regeneration process of newts. Changes in activation-associated PKC distribution proceeded through different mechanisms: long-lasting increase in membrane bound activity with a net increase of overall activity in the spinal cord, and long-term redistribution of enzyme activity to the particulate fraction in brain.  相似文献   

18.
The postnatal development of glycine synaptic receptors has been studied. Strychnine binding to the synaptic membrane fraction is very low at birth, increases thereafter, and reaches adult values at the 15th day in the brain, and at the 30th day in the spinal cord. Throughout postnatal development, there are more glycine receptors in the spinal cord than in the brain. The development of receptors in the spinal cord displays a pattern similar to that reported previously for the glycine reuptake system in spinal cord slices and in the activity of spinal cord glycine synthase. In rats with experimental hyperglycinemia strychnine binding to spinal cord glycine receptors increases much more rapidly, reaching a level 1.5 times the control value by day 10. When the hyperglycinemia was induced after the 10th postnatal day, however, no effect on the glycine receptors was observed. This increased number of receptors could be explained by an effect of glycine on the synaptic stabilisation process. No changes in the KD for strychnine were observed either during postnatal development or in hyperglycinemic rats. The KD remained approximately 10 nM in the spinal cord and 50 nM in the brain. Results are discussed with respect to the ontogeny of glycinergic synapses and the pathogenesis of nonketotic hyperglycinemia.  相似文献   

19.
Abstract— The convulsant action of allylglycine (2-amino-4-pentenoic acid) is due to the metabolic conversion of allylglycine to 2-keto-4-pentenoic acid, a more potent glutamic acid decarboxylase inhibitor and more potent convulsant than the parent compound. We report regional changes in cerebral GABA concentration in rats after administration of d - and l -allylglycine. d -Allylglycine (3.75 mmol/kg) induced convulsions in 95–115 min, characterised by repeated clonic limb movements and rapid rotation around the head to tail axis. GABA concentrations were only reduced in cerebellum and ponsmedulla during the pre and post-convulsive periods. The localised reduction of GABA concentration is consistent with the enzymic conversion of d -allylglycine to 2-keto-4-pentenoic acid catalysed by cerebral d -amino acid oxidase, an enzyme known to be localised to the hind brain and spinal cord. l -allylglycine (1.2mmol/kg i.p.) induced convulsions in 65 -90 min, characterised by violent running followed by tonic flexion and extension. During the pre-convulsive period, GABA concentrations were reduced in all brain areas studied except the globus pallidus and ventral midbrain. The widespread decreases in GABA concentration suggest that the enzyme(s) which catalyse the conversion of l -allylglycine to 2-keto-4-pentenoic acid are widely distributed within the brain.  相似文献   

20.
以改良Alen氏法造成Wistar大鼠不完全性脊髓损伤,采用神经学功能评分法评定大鼠运动功能,应用定量酶细胞化学方法观察脊髓前角运动神经元内乙酰胆碱酯酶(AChE)和酸性磷酸酶(AcP)活性变化。结果显示:1.脊髓损伤后大鼠运动功能障碍,随后逐渐恢复。2.前角运动神经元内AChE活性减弱、AcP活性增强;随后酶活性呈逐渐恢复,四周时AChE活性基本恢复正常。结果说明:大鼠脊髓不完全性损伤后运动功能变化与前角运动神经元的功能状态具有较强的相关性;前角运动神经元在不完全性脊髓损伤运动功能恢复中起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号