首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Five healthy men were chosen as experimental subjects and were divided into groups at random. The subjects walked with a load in a shoulder-waist-back manner on the treadmill at the speed of 5, 7 and 9 km h-1. The parameters measured were as follows: oxygen expenditure, energy consumption, heart rate and self appraisal. Based on the experimental results and analysis of multiple regression, the authors suggested that physical loading should not exceed 25 kg (i.e. roughly equal to 39% of average body weight of male Chinese), when the walking speed was at 5 km h-1. The suitable loading at physical work would be 20 kg (i.e. equal to 31% of the average body weight of male Chinese).  相似文献   

2.
Current physiological criteria for limiting work in hot conditions are frequently based on responses to mainly dynamic work (eg treadmill walking). Their applicability to industrial situations containing mixed static and dynamic work is questioned, since the physiological responses to static work are different from those of dynamic work. Each of eight subjects attempted a one hour uphill treadmill walk (mainly dynamic work), and an uphill treadmill walk whilst intermittently carrying a 20 kg weight in the arms (mixed static and dynamic work). The external work rates in the two conditions were equal, effected by lowering the treadmill gradient in the loaded condition. Experiments were conducted in a hot climate (33 degrees C dry bulb, 25 degrees C wet bulb). Oxygen consumption, minute ventilation, sweat rate and rated perceived exertion were all significantly higher (p less than 0.001) for the mixed static and dynamic work than for the dynamic work. This was also the case for heart rate and forearm skin temperature (p less than 0.01), and for auditory canal temperature (p less than 0.05). There was no significant difference between the two types of work for mean skin temperature, calf skin temperature and chest skin temperature. These results show that for the same external work, physiological strain and perceived exertion are greater for mixed static and dynamic work (carrying a load in the arms) than for mainly dynamic work (walking on a treadmill). They suggest that it is not appropriate to make direct comparisons of laboratory studies based on dynamic work, with practical situations containing mixed static and dynamic work in the heat.  相似文献   

3.
To determine the effects of wearing heavy footwear on physiological responses five male and five female subjects were measured while walking on a treadmill (4, 5.25, and 6.5 km.h-1) with different external loads (barefooted, combat boots, and waist pack). While walking without an external load the oxygen uptake, as a percentage of maximal oxygen uptake (%VO2max) of the men increased from 25% VO2max at 4 km.h-1 to 31% VO2max at 5.25 km.h-1 and to 42% VO2max at 6.5 km.h-1. The women had a significantly higher oxygen uptake of 30%, 40%, and 55% VO2max, respectively. In the most strenuous condition, walking at 6.5 km.h-1 with combat boots and waist pack (12 kg), the oxygen uptake for the men and women amounted to 53% and 75% VO2max, respectively. The heart rate showed a similar response to the oxygen uptake, the women having a heart rate which was 15-40 beats.min-1 higher than that of the men, depending on the experimental condition. The perceived exertion was shown to be greatly dependent on the oxygen uptake. From the results a regression formula was calculated predicting the oxygen uptake depending on the mass of the footwear, walking speed and body mass. It was concluded that the mass of footwear resulted in an increase in the energy expenditure which was a factor 1.9-4.7 times greater than that of a kilogram of body mass, depending on sex and walking speed.  相似文献   

4.
The present study was undertaken to examine the energy cost of prolonged walking while carrying a backpack load. Six trained subjects were tested while walking for 120 min on a treadmill at a speed of 1.25 m.s-1 and 5% elevation with a well fitted backpack load of 25 and 40 kg alternately. Carrying 40 kg elicited a significantly higher (p less than 0.01) energy cost than 25 kg. Furthermore, whereas carrying 25 kg resulted in a constant energy cost, 40 kg yielded a highly significant (p less than 0.05) increase in energy cost over time. The study implies that increase in load causes physical fatigue, once work intensity is higher than 50% maximal work capacity. This is probably due to altered locomotion biomechanics which in turn lead to the increase in energy cost. Finally, the prediction model which estimates energy cost while carrying loads should be used with some caution when applied to heavy loads and long duration of exercise, since it might underestimate the actual energy cost.  相似文献   

5.
To determine the effects of load carriage and walking speed on stride parameters and the coordination of trunk movements, 12 subjects walked on a treadmill at a range of walking speeds (0.6-1.6 m s(-1)) with and without a backpack containing 40% of their body mass. It was hypothesized that compared to unloaded walking, load carriage decreases transverse pelvic and thoracic rotation, the mean relative phase between pelvic and thoracic rotations, and increases hip excursion. In addition, it was hypothesized that these changes would coincide with a decreased stride length and increased stride frequency. The findings supported the hypotheses. Dimensionless analyses indicated that there was a significantly larger contribution of hip excursion and smaller contribution of transverse plane pelvic rotation to increases in stride length during load carriage. In addition, there was a significant effect of load carriage on the amplitudes of transverse pelvic and thoracic rotation and the relative phase of pelvic and thoracic rotation. It was concluded that the shorter stride length and higher stride frequency observed when carrying a backpack is the result of decreased pelvic rotation. During unloaded walking, increases in pelvic rotation contribute to increases in stride length with increasing walking speed. The decreased pelvic rotation during load carriage requires an increased hip excursion to compensate. However, the increase in hip excursion is insufficient to fully compensate for the observed decrease in pelvis rotation, requiring an increase in stride frequency during load carriage to maintain a constant walking speed.  相似文献   

6.
Responses of the lower limb to load carrying in walking man   总被引:2,自引:0,他引:2  
Muscle activity patterns of several lower limb muscles were examined in the left leg of normal human subjects walking at comfortable speed on a treadmill. In addition knee angular changes and the durations of the swing and stance phases of the step cycle were recorded. Data were collected during a period of normal control walking and when the subject carried a load, either in his right or left hand or on his back. Load (up to 20% of body weight) carried in either hand caused minimal changes in the kinematic parameters investigated but evoked significant prolongation of the normal ongoing electromyographic activity in the contralateral Gluteus medius and in the ipsilateral Gastrocnemius, Vastus lateralis and Semimembranosus. Load (up to 50% of body weight) carried on the back significantly shortened the swing phase and prolonged the ongoing electromyographic activity of the Vastus lateralis. These findings would seem to indicate that the activity of the leg musculature during walking is so tightly controlled that deviation from the normal kinematic pattern of the legs is largely prevented even when body posture and balance are disturbed by carrying substantial additional load.  相似文献   

7.
The metabolic energy cost of walking is determined, to a large degree, by body mass, but it is not clear how body composition and mass distribution influence this cost. We tested the hypothesis that walking would be most expensive for obese women compared with obese men and normal-weight women and men. Furthermore, we hypothesized that for all groups, preferred walking speed would correspond to the speed that minimized the gross energy cost per distance. We measured body composition, maximal oxygen consumption, and preferred walking speed of 39 (19 class II obese, 20 normal weight) women and men. We also measured oxygen consumption and carbon dioxide production while the subjects walked on a level treadmill at six speeds (0.50-1.75 m/s). Both obesity and sex affected the net metabolic rate (W/kg) of walking. Net metabolic rates of obese subjects were only approximately 10% greater (per kg) than for normal-weight subjects, and net metabolic rates for women were approximately 10% greater than for men. The increase in net metabolic rate at faster walking speeds was greatest in obese women compared with the other groups. Preferred walking speed was not different across groups (1.42 m/s) and was near the speed that minimized gross energy cost per distance. Surprisingly, mass distribution (thigh mass/body mass) was not related to net metabolic rate, but body composition (% fat) was (r2= 0.43). Detailed biomechanical studies of walking are needed to investigate whether obese individuals adopt novel energy saving mechanisms during walking.  相似文献   

8.
Instrumented treadmills offer significant advantages for analysis of human locomotion, including recording consecutive steady-state gait cycles, precisely controlling walking speed, and avoiding force plate targeting. However, some studies of hemiparetic walking on a treadmill have suggested that the moving treadmill belt may fundamentally alter propulsion mechanics. Any differences in propulsion mechanics during treadmill walking would be problematic since recent studies assessing propulsion have provided fundamental insight into hemiparetic walking. The purpose of this study was to test the hypothesis that there would be no difference in the generation of anterior/posterior (A/P) propulsion by performing a carefully controlled comparison of the A/P ground reaction forces (GRFs) and impulses in healthy adults during treadmill and overground walking. Gait data were collected from eight subjects walking overground and on a treadmill with speed and cadence controlled. Peak negative and positive horizontal GRFs in early and late stance, respectively, were reduced by less than 5% of body weight (p<0.05) during treadmill walking compared to overground walking. The magnitude of the braking impulse was similarly lower (p<0.05) during treadmill walking, but no significant difference was found between propulsion impulses. While there were some subtle differences in A/P GRFs between overground and treadmill walking, these results suggest there is no fundamental difference in propulsion mechanics. We conclude that treadmill walking can be used to investigate propulsion generation in healthy and by implication clinical populations.  相似文献   

9.
Although numerous studies have investigated the effects of load carriage on gait mechanics, most have been conducted on active military men. It remains unknown whether men and women adapt differently to carrying load. The purpose of this study was to compare the effects of load carriage on gait mechanics, muscle activation patterns, and metabolic cost between men and women walking at their preferred, unloaded walking speed. We measured whole body motion, ground reaction forces, muscle activity, and metabolic cost from 17 men and 12 women. Subjects completed four walking trials on an instrumented treadmill, each five minutes in duration, while carrying no load or an additional 10%, 20%, or 30% of body weight. Women were shorter (p<0.01), had lower body mass (p=0.01), and had lower fat-free mass (p=0.02) compared to men. No significant differences between men and women were observed for any measured gait parameter or muscle activation pattern. As load increased, so did net metabolic cost, the duration of stance phase, peak stance phase hip, knee, and ankle flexion angles, and all peak joint extension moments. The increase in the peak vertical ground reaction force was less than the carried load (e.g. ground force increased approximately 6% with each 10% increase in load). Integrated muscle activity of the soleus, medial gastrocnemius, lateral hamstrings, vastus medialis, vastus lateralis, and rectus femoris increased with load. We conclude that, despite differences in anthropometry, men and women adopt similar gait adaptations when carrying load, adjusted as a percentage of body weight.  相似文献   

10.
Soldiers regularly transport loads weighing >20 kg at slow speeds for long durations. These tasks elicit high energetic costs through increased positive work generated by knee and ankle muscles, which may increase risk of muscular fatigue and decrease combat readiness. This study aimed to determine how modifying where load is borne changes lower-limb joint mechanical work production, and if load magnitude and/or walking speed also affect work production. Twenty Australian soldiers participated, donning a total of 12 body armor variations: six different body armor systems (one standard-issue, two commercially available [cARM1-2], and three prototypes [pARM1-3]), each worn with two different load magnitudes (15 and 30 kg). For each armor variation, participants completed treadmill walking at two speeds (1.51 and 1.83 m/s). Three-dimensional motion capture and force plate data were acquired and used to estimate joint angles and moments from inverse kinematics and dynamics, respectively. Subsequently, hip, knee, and ankle joint work and power were computed and compared between armor types and walking speeds. Positive joint work over the stance phase significantly increased with walking speed and carried load, accompanied by 2.3–2.6% shifts in total positive work production from the ankle to the hip (p < 0.05). Compared to using cARM1 with 15 kg carried load, carrying 30 kg resulted in significantly greater hip contribution to total lower-limb positive work, while knee and ankle work decreased. Substantial increases in hip joint contributions to total lower-limb positive work that occur with increases in walking speed and load magnitude highlight the importance of hip musculature to load carriage walking.  相似文献   

11.
The primary objective of this research was to determine changes in body and joint stiffness parameters and kinematics of the knee and body center of mass (COM), that result from wearing a backpack (BP) with a 40% body weight load at increasing speeds of walking. It was hypothesized that there would be speed and load-related increases in stiffness that would prevent significant deviations in the COM trajectory and in lower-extremity joint angles. Three independent biomechanical models employing kinematic data were used to estimate global lower-extremity stiffness, vertical stiffness and knee joint rotational stiffness in the sagittal plane during walking on a treadmill at speeds of 0.6-1.6 ms(-1) in 0.2 ms(-1) increments in BP and no backpack conditions. Kinematic data were collected using an Optotrak, three-dimensional motion analysis system. Knee angles and vertical excursion of the COM during the compression (loading phase) increased as a function of speed but not load. All three estimates of stiffness showed significant increases as a function of both speed and load. Significant interaction effects indicated a convergence of load-related stiffness values at lower speeds. Results suggested that increases in muscle-mediated stiffness are used to maintain a constant vertical excursion of the COM under load across the speeds tested, and thereby limit increases in metabolic cost that would occur if the COM would travel through greater vertical range of motion.  相似文献   

12.
Treadmill walking aims to simulate overground walking, but intra-stride belt speed variations of treadmills result in some interaction between treadmill and subject, possibly obstructing this aim. Especially in self-paced treadmill walking, in which the belt speed constantly adjusts to the subject, these interactions might affect the gait pattern significantly. The aim of this study was to quantify the energy exchange between subject and treadmill, during the fixed speed (FS) and self-paced (SP) modes of treadmill walking. Eighteen subjects walked on a dual-belt instrumented treadmill at both modes. The energy exchange was calculated as the integration of the product of the belt speed deviation and the fore-aft ground reaction force over the stride cycle. The total positive energy exchange was 0.44 J/stride and the negative exchange was 0.11 J/stride, which was both less than 1.6% of the performed work on the center of mass. Energy was mainly exchanged from subject to treadmill during both the braking and propulsive phase of gait. The two treadmill modes showed a similar pattern of energy exchange, with a slightly increased energy exchange during the braking phase of SP walking. It is concluded that treadmill walking is only mildly disturbed by subject-belt interactions when using instrumented treadmills with adequate belt control.  相似文献   

13.
This randomized controlled study was designed to prove the hypothesis that a novel approach to high-speed interval training, based on walking on a treadmill with the use of body weight unloading (BWU), would have improved energy cost and speed of overground walking in healthy older women. Participants were randomly assigned to either the exercise group (n = 11, 79.6 +/- 3.7 yr, mean +/- SD) or the nonintervention control group (n = 11, 77.6 +/- 2.3 yr). During the first 6 wk, the exercise group performed walking interval training on the treadmill with 40% BWU at the maximal walking speed corresponding to an intensity close to heart rate at ventilatory threshold (T(vent) walking speed). Each session consisted of four sets of 5 min of walking (three 1-min periods at T(vent) walking speed, with two 1-min intervals at comfortable walking speed in between each period at T(vent) walking speed) with 1-min interval between each set. Speed was increased session by session until the end of week 6. BWU was then progressively reduced to 10% during the last 6 wk of intervention. After 12 wk, the walking energy cost per unit of distance at all self-selected overground walking speeds (slow, comfortable, and fast) was significantly reduced in the range from 18 to 21%. The exercise group showed a 13% increase in maximal walking speed and a 67% increase in mechanical power output at T(vent) after the training program. The novel "overspeed" training approach has been demonstrated to be effective in improving energy cost and speed of overground walking in healthy older women.  相似文献   

14.
The physiological responses of seven young male highlanders were recorded at high altitude while they were carrying loads (0, 25, 35, 45, and 55 kg) on snow at different speeds, supporting the loads on their backs by circular straps around the forehead. The rates of work calculated from the gross weight (body weight plus actual load in kg) multiplied by the speed of walking, m.min-1, ranged from 4,460 to 8,440 kg.m.min-1. The relationship between the rate of work and energy expenditure was rectilinear within the present range of values. The oxygen consumption (51.6 and 59.7 ml.min-1.kg-1 BW) for 55-kg load (at 4.09 and 4.64 km.h-1) possibly reached maximal aerobic capacity. At higher energy output at high altitude the subjects were exhausted after a short period of work. The proportion of increase of oxygen consumption per kg gross weight carried or per kg.m was almost constant up to a 55-kg experimental load. It is suggested that for day-to-day operations work should not be undertaken at more than 30-40% of maximal work capacity; a rate of work around 4,000 kg.m.min-1 (25-30 kg actual load at 3.0 to 3.5 km.h-1) may be considered as optimal for highlanders and porters at high altitude.  相似文献   

15.
In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.  相似文献   

16.
We examined the effect of maternal weight gain during pregnancy on exercise performance. Ten women performed submaximal cycle (up to 60 W) and treadmill (4 km/h, up to 10% grade) exercise tests at 34 +/- 1.5 (SD) wk gestation and 7.6 +/- 1.7 wk postpartum. Postpartum subjects wearing weighted belts designed to equal their body weight during the antepartum tests performed two additional treadmill tests. Absolute O2 uptake (VO2) at the same work load was higher during pregnancy than postpartum during cycle (1.04 +/- 0.08 vs. 0.95 +/- 0.09 l/min, P = 0.014), treadmill (1.45 +/- 0.19 vs. 1.27 +/- 0.20 l/min, P = 0.0002), and weighted treadmill (1.45 +/ 0.19 vs. 1.36 +/- 0.20 l/min, P = 0.04) exercise. None of these differences remained, however, when VO2 was expressed per kilogram of body weight. Maximal VO2 (VO2max) estimated from the individual heart rate-VO2 curves was the same during and after pregnancy during cycling (1.96 +/- 0.37 to 1.98 +/- 0.39 l/min), whereas estimated VO2max increased postpartum during treadmill (2.04 +/- 0.38 to 2.21 +/- 0.36 l/min, P = 0.03) and weighted treadmill (2.04 +/- 0.38 to 2.19 +/- 0.38 l/min, P = 0.03) exercise. We conclude that increased body weight during pregnancy compared with the postpartum period accounts for 75% of the increased VO2 during submaximal weight-bearing exertion in pregnancy and contributes to reduced exercise capacity. The postpartum increase in estimated VO2max during weight-bearing exercise is the result of consistently higher antepartum heart rates during all submaximal work loads.  相似文献   

17.
The use of body weight support (BWS) systems during locomotor retraining has become routine in clinical settings. BWS alters load receptor feedback, however, and may alter the biomechanical role of the ankle plantarflexors, influencing gait. The purpose of this study was to characterize the biomechanical adaptations that occur as a result of a change in limb load (controlled indirectly through BWS) and gait speed during treadmill locomotion. Fifteen unimpaired participants underwent gait analysis with surface electromyography while walking on an instrumented dual-belt treadmill at seven different speeds (ranging from 0.4 to 1.6 m/s) and three BWS conditions (ranging from 0% to 40% BWS). While walking, spatiotemporal measures, anterior/posterior ground reaction forces, and ankle kinetics and muscle activity were measured and compared between conditions. At slower gait speeds, propulsive forces and ankle kinetics were unaffected by changing BWS; however, at gait speeds ≥approximately 0.8 m/s, an increase in BWS yielded reduced propulsive forces and diminished ankle plantarflexor moments and powers. Muscle activity remained unaltered by changing BWS across all gait speeds. The use of BWS could provide the advantage of faster walking speeds with the same push-off forces as required of a slower speed. While the use of BWS at slower speeds does not appear to detrimentally affect gait, it may be important to reduce BWS as participants progress with training, to encourage maximal push-off forces. The reduction in plantarflexor kinetics at higher speeds suggests that the use of BWS in higher functioning individuals may impair the ability to relearn walking.  相似文献   

18.
It is widely accepted that the relationship between oxygen consumption and body weight obtained during exercise on a bicycle ergometer differs from that obtained during treadmill walking. Experimental evidence to support this claim is lacking. To examine this difference a group of subjects (body weight 41--81 kg) undertook a predetermined level of submaximal exercise on a bicycle ergometer and a treadmill. Oxygen consumption was measured in a steady state at rest (i.e. sitting on the bicycle ergometer and standing on the treadmill) and during the two modes of exercise. A significant positive correlation between oxygen consumption and body weight was obtained under all four conditions of measurement. At rest the two regression lines did not differ in slope or elevation. During exercise the slope and the elevation of the line obtain from treadmill walking were significantly greater than from bicycle ergometer exercise. The 'metabolic cost' of bicycle ergometer exercise, (Vo2 during exercise--V02 at rest), showed no significant correlation with body weight. In contrast, there was a significant positive correlation during walking. It is suggested that these differences have arisen due to a different proportion of the total body weight supported by the subject in the two forms of exercise.  相似文献   

19.
Mechanical efficiency, heart rate, blood lactate, and some other variables were studied in six children with cerebral palsy who walked on a treadmill before and after corrective surgery. During each test, conducted at each child's naturally selected speed, two situations were studied: steady state level walking for 9 min, and then walking at an increasing inclination up to 20% for another 10 min. During the test the subjects were allowed to hold on to a handrail to eliminate the risk of falling off the treadmill. The corrective surgery resulted in a 5% reduction in oxygen consumption per kg body mass during level walking. The subjects' levels of physical fitness, as estimated from oxygen pulse, however, were unchanged. These results are indicative of a biomechanical improvement due to the corrective surgery. While walking at a 20% inclination the subjects off loaded themselves to different degrees on the handrail which influenced the results. Their feeling of exhaustion at this load was probably due to local factors, since heart rate was well below maximal values, and blood lactate, respiratory exchange ratio and ventilatory equivalent also indicated that they were below their anaerobic thresholds (50-60% of maximal oxygen uptake).  相似文献   

20.
目的和方法:用连续心率监测和气体分析的方法测量了15名12岁男孩,在分别负载相当於他们体重10%,15%和20%重的书包,并以不背书包为对照的情况下,以1.1m/s的速度步行20min中,停止步行后3min和5min的心率、能量消耗和人体工作强度(%最大摄氧量)的变化。受试者的血压亦在步行前,步行后即刻、3min和5min予以测量。结果:当受试者负载20%体重书包行走至5min时,其能量消耗,摄氧量的变化和相对工作强度较负重0%、10%和15%体重行走有显著性差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号