首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lectin amaranthin, purified from the seeds of Amaranthus caudatus, has been shown to react specifically with the Gal beta 1,3GalNAc-alpha and the NeuAc alpha 2,3Gal beta 1,3GalNAc-alpha sequence which represent the T antigen and the cryptic T antigen, respectively. We report here the development of labeling techniques that apply amaranthin to stain paraffin sections from rat fetuses. Amaranthin staining was inhibited by pre-incubation of lectin-gold complexes with 10 mM Gal beta 1,3GalNAc-alpha-O-benzyl (synthetic T antigen) or 10 mM Gal beta 1,3GalNAc-alpha-O-aminophenylethyl-human serum albumin (T antigen neoglycoprotein), asialoglycophorin, asialofetuin, and asialomucin. The beta-elimination reaction also abolished the lectin staining demonstrating specificity for O-glycosidically linked structures. A comparison with monoclonal anti-T antigen antibody immunostaining demonstrated that amaranthin detects the T antigen and its cryptic form in tissue sections. Application of the galactose oxidase-Schiff sequence abolished amaranthin (and anti-T antibody) binding to the T antigen but not to its cryptic form, and therefore permitted their differentiation in tissue sections. Histochemical evidence was obtained indicating that amaranthin is a more specific anti-T reagent than peanut lectin. Data are presented that show the differential expression of the T antigen and the cryptic T antigen in organs and cells of rat fetuses late in gestation. Therefore, amaranthin can be used for histochemical detection of the T antigen and the cryptic T antigen, and facilitates discrimination between them.  相似文献   

2.
The human chorionic gonadotropin beta-subunit tryptic COOH-terminal peptide (residues 123-145) which contains 3 serine-linked sugar chains was isolated. The sugar chains were cleaved by beta-elimination and then separated by gel filtration. The peaks were pooled and their compositions determined. The products of serial glycosidase digestion and periodate oxidation of the intact glycopeptide were also characterized. Of the serine-linked sugar chains, 13% were the hexasaccharide NeuAc alpha 2,3 Gal beta 1,3 (NeuAc alpha 2,3 Gal beta 1,4 GlcNAc beta 1,6) GalNAc, 34% the tetrasaccharide NeuAc alpha 2,3 Gal beta 1,3 (NeuAc alpha 2,6) GalNAc, 43% the trisaccharide NeuAc alpha 2,3 Gal beta 1,3 GalNAc and 10% the disaccharide NeuAc alpha 2,6 GalNAc.  相似文献   

3.
Siglec-7 is a sialic acid-binding lectin recently identified as an inhibitory receptor on natural killer cells. Here we characterize the sugar-binding specificity of Siglec-7 expressed on Chinese hamster ovary cells using polyvalent streptavidin-based glyco-probes. Glyco-probes carrying unique oligosaccharide structures such as GD3 (NeuAc alpha 2,8NeuAc alpha 2,3Gal beta 1,4Glc) and LSTb (Gal beta 1,3[NeuAc alpha 2,6]GlcNAc beta 1,3Gal beta 1,4Glc) oligosaccharides bound to Siglec-7 better than those carrying LSTc (NeuAc alpha 2,6Gal beta 1,4GlcNAc beta 1,3Gal beta 1,4Glc) or GD1a (NeuAc alpha 2,3Gal beta 1,3GalNAc beta 1,4[NeuAc alpha 2,3]Gal beta 1,4Glc) oligosaccharides. In contrast, Siglec-9, which is 84% identical to Siglec-7, did not bind to the GD3 and LSTb probes but did bind to the LSTc and GD1a probes. To identify a region(s) responsible for their difference in binding specificity, we prepared a series of V-set domain chimeras between Siglecs-7 and -9. Substitution of a small region, Asn(70)-Lys(75), of Siglec-7 with the equivalent region of Siglec-9 resulted in loss of Siglec-7-like binding specificity and acquisition of Siglec-9-like binding properties. In comparison, a Siglec-9-based chimera, which contains Asn(70)-Lys(75) with additional amino acids derived from Siglec-7, exhibited Siglec-7-like specificity. These results, combined with molecular modeling, suggest that the C-C' loop in the sugar-binding domain plays a major role in determining the binding specificities of Siglecs-7 and -9.  相似文献   

4.
The specificity of the sialic acid-binding lectin from the snail Cepaea hortensis, purified by affinity chromatography on fetuin-Sepharose, was studied by hemagglutination inhibition assay applying 32 sialic acid derivatives and 14 glycoproteins. 2-alpha-Methyl-9-O-acetyl-NeuAc was the most potent inhibitor, followed closely by 2-alpha-methyl-NeuAc and 2-alpha-benzyl-NeuAc. An axially orientated carboxyl group is a prerequisite for maximal lectin-sugar binding. Neither size nor polarity of the alpha-anomeric substituent significantly influenced inhibition potency. An intact sialic acid N-acetyl group is essential for optimal lectin-sugar interaction. The trihydroxypropyl side chain also is of great importance. However, a bulky hydrophobic substituent at the side chain like a 9-O-tosyl residue did not decrease binding to the lectin. The lectin did not distinguish between NeuAc alpha 2----3Gal beta 1----4Glc and NeuAc alpha 2----6Gal beta 1----4Glc. Among other sugars tested, only N-acetylglucosamine showed inhibition, although 50-fold less. The most potent glycoprotein inhibitors were those carrying O-chains only or preferentially, as ovine submaxillary mucin, bovine submaxillary mucin, and glycophorin A. Tamm-Horsfall protein was an exception being a strong inhibitor, although carrying only N-chains. Asialoglycoproteins were inactive. Glycoproteins containing the NeuAc alpha 2----3Gal sequence inhibited the lectin as well as those with NeuAc alpha 2----6GalNAc. From the results a model of the lectin's binding site for sialic acid is suggested.  相似文献   

5.
Fetal calf liver microsomes were found to be capable of sialylating 14C-galactosylated ovine submaxillary asialomucin. The main oligosaccharide product chain could be obtained by beta-elimination under reductive conditions and was identified as NeuAc alpha 2 leads to 3Gal beta 1 leads to 3GalNAcol (where GalNAcol represents N-acetylgalactosaminitol) by means of high performance liquid chromatography (HPLC) analysis and methylation. The branched trisaccharide Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)-GalNAcol and the disaccharide NeuAc alpha 2 leads to 6GalNAcol were not formed. Very similar results were obtained when asialofetuin and antifreeze glycoprotein were used as an acceptor. When 3H-sialylated antifreeze glycoprotein ([3H]NeuAc alpha 2 leads to 3Gal beta 1 leads to 3GalNAc-protein) was incubated with fetal calf liver microsomes and CMP-[14C]NeuAc, a reduced tetrasaccharide could be isolated. The structure of this product chain appeared to be [3H]NeuAc alpha 2 leads to 3Gal beta 1 leads to 3([14C]NeuAc alpha 2 leads to 6)GalNAcol, as established by means of HPLC analysis, specific enzymatic degradation with Newcastle disease virus neuraminidase, and periodate oxidation. These data indicate that fetal calf liver contains two sialyltransferases involved in the biosynthesis of the O-linked bisialotetrasaccharide chain. The first enzyme is a beta-galactoside alpha 2 leads to 3 sialyltransferase which converts Gal beta 1 leads to 3 GalNAc chains to the substrate for the second enzyme, a (NeuAc alpha 2 leads to 3Gal beta 1 leads to 3)GalNAc-protein alpha 2 leads to 6 sialyltransferase. The latter enzyme does not sialylate GalNAc or Gal beta 1 leads to 3GalNAc units but is capable of transferring sialic acid to C-6 of GalNAc in NeuAc alpha 2 leads to 3Gal beta 1 leads to 3GalNAc trisaccharide side chains, thereby dictating a strictly ordered sequence of sialylation of the Gal beta 1 leads to 3 GalNAc units in fetal calf liver.  相似文献   

6.
A variant of the MM glycoprotein (glycophorin A) was isolated from erythrocyte membranes of two individual donors, a mother (L.G.) and daughter (V.W.). This glycoprotein was found to be a carbohydrate variant in which, for both donors, certain O-glycosidically linked saccharides retained the core structure consisting of NeuAc(alpha 2,3)Gal(beta 1,3)GalNAc that is common to all O-linked saccharides of the MN glycoproteins, and, in addition, contained substituents, of varying chain lengths, on the primary carbinol of GalNAc. These saccharides were released from the polypeptide by beta-elimination in the presence of sodium borohydride, and aspects of their structure were investigated by glycosidase digestion and periodate oxidation. Thus, the smallest variant structure was deduced to be NeuAc(alpha 2,3)Gal(beta 1,3)[GlcNAc(beta 1,6)]H2GalNAc. The 6-O-linked GlcNAc appears to serve as the focus of further chain elongation reactions, involving alternate additions of Gal and GlcNAc residues and leading to the formation of several homologous structures. Two such structures, NeuAc(alpha 2,3)Gal(beta 1,3)[GlcNAc(beta 1,?) Gal(beta 1,3/4)GlcNAc(beta 1,6)]H2GalNAc and NeuAc(alpha 2,3) Gal(beta 1,3)[Gal(beta 1,3/4)GlcNAc(beta 1,6)]H2GalNAc were the predominant species present. A larger saccharide was also isolated and its partial sequence was determined to be Gal(beta 1,3/4)GlcNAc(beta 1,?)[Gal(beta 1,3/4)Glc-NAc(beta 1,?)] Gal(beta 1,3/4)GlcNAc(beta 1,6)[NeuAc(alpha 2,3)Gal-(beta 1,3)]H2GalNAc. Because the peptide portion of these glycoproteins contains two methionine residues, it was possible to isolate two CNBr glycopeptides from separate regions of the molecule, and to assess the distribution of these variant structures in the polypeptide. The saccharides were linked to about 2-3 Ser and/or Thr residues in the donor LG glycoprotein and one of the attachment sites was located within the CNBr glycooctapeptide representing the NH2 terminus. Considerable heterogeneity in saccharide structure was documented for this site, and it is likely that such heterogeneity occurs also at other sites. The variant saccharides bear structural similarities to the core region of O-linked saccharides of certain blood group-active mucins and ovarian cyst secretions, and to the outer sequences of N-linked carbohydrate units (I-, i-active) of the major glycoprotein of human erythrocytes, band 3. The structures of the variant saccharides suggest that they may be potential precursors of H blood group-active carbohydrates, present in varying degrees of maturity, and attached to an integral protein of erythrocytes.  相似文献   

7.
Four common sialic acids (Sia), NeuAc, N-glycolyl-neuraminic acid (NeuGc), 4-O-acetyl-N-acetylneuraminic acid (4-O-Ac-NeuAc), and 9-O-Ac-NeuAc were examined for activation to their corresponding CMP-sialic acid conjugates and subsequently for their transfer to glycoprotein oligosaccharides by purified mammalian sialyltransferases. CMP-sialic acid synthetases from calf brain and from bovine and equine submaxillary glands were found to convert NeuAc, NeuGc, and 9-O-Ac-NeuAc to their corresponding CMP-sailic acids. In contrast, no conversion of 4-O-Ac-NeuAc to CMP-4-O-Ac-NeuAc was observed for any of the three synthetases examined. A new procedure for the preparation of CMP-9-O-Ac-NeuAc, CMP-NeuGc, and CMP-NeuAc in high yield and purity was developed, using the calf brain CMP-sialic acid synthetase. Each of these derivatives was tested as donor substrates for six mammalian sialyltransferases purified from porcine, rat, and bovine tissues, including a bovine GalNAc alpha 2,6 sialyltransferase whose purification is described in this report. The sialyltransferases examined represent those which form the Sia alpha 2,6Gal beta 1,4-GlcNAc-, Sia alpha 2,3Gal beta 1,3(4)GlcNAc-, Sia alpha 2,3Gal beta 1,3-GalNAc- and Sia alpha 2,6GalNAc- sequences found on N-linked and O-linked oligosaccharides of glycoproteins. CMP-NeuAc and CMP-NeuGc were equally good donor substrates for all six sialyltransferases. However, transfer of 9-O-Ac-NeuAc from CMP-9-O-Ac-NeuAc varied from only 10% to nearly 70% that of the transfer of NeuAc from CMP-NeuAc. Results are viewed to define the relative roles of direct transfer of these sialic acids and modification of glycosidically bound NeuAc in glycoproteins.  相似文献   

8.
A monoclonal antibody produced by immunization with cells of the human glioma cell line D-54 MG reacted with ganglioside GM2. The binding epitope of the antibody was found to be GalNAc beta 1-4(NeuAc alpha 2-3)Gal. Immunological detection of glycolipid antigens on thin-layer plates with this monoclonal antibody, DMAb-1, revealed the presence of a new ganglioside. This ganglioside, co-migrating with NeuAc alpha 2-6Gal beta 1-4GlcNAc beta 1-3Gal beta 1-4Glc beta 1-1Cer(6'-LM1) and GalNAc beta 1-4(NeuAc alpha 2-3)Gal beta 1-3GalNAc beta 1-4Gla beta 1-4Glc beta 1-1Cer (GalNAc-isoGM1) at chromatographic separation was isolated from human meconium. Its structure was determined by permethylation and fast atom bombardment-mass spectometry analyses. The new ganglioside was found to be a combination of the lacto and ganglio series gangliosides, and the structure found to be GalNAc beta 1-4(NeuAc alpha 2-3)Gal beta 1-3GlcNAc alpha 1-3Gal beta 1-4Glc beta 1-1Cer(GalNAc-3'-isoLM1).  相似文献   

9.
Biosynthesis of the c-series gangliosides GT3, GT2 and GP1c was studied in Golgi derived from rat liver. Competition experiments show that the synthesis of ganglioside GT2 (GalNAc beta 1----4-(NeuAc alpha 2----8NeuAc alpha 2----8NeuAc alpha 2----3)Gal- beta 1----4Glc beta 1----1Cer) from GT3 (NeuAc alpha 2----8NeuAc alpha 2----8-NeuAc alpha 2----3Gal beta 1----4Glc beta 1----1Cer) seems to be catalysed by the same N-acetylgalactosaminyl-transferase (GalNAc-T), which converts GM3 (NeuAc alpha 2----3Gal beta 1----4Glc beta 1----1Cer) to GM2 (GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1Cer). Similar competition experiments suggest moreover that the sialytransferase V (SAT V), which catalyses the synthesis of GT1a (NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----3GalNAc beta 1----4- (NeuAc alpha 2----3)-Gal beta 1----4Glc beta 1----1Cer) from GD1a (NeuAc alpha-2----3Gal beta 1----3GalNAc beta 1----4(NeuAc alpha 2----3)Gal beta 1----4Glc beta 1----1-Cer) appears to be identical to the enzyme that catalyses the synthesis of GP1c (NeuAc alpha 2----8NeuAc alpha 2----3Gal beta 1----3-GalNAc beta 1----4(NeuAc alpha 2----8-NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta-1----4Glc beta 1----4Glc beta 1----1Cer) from GQ1c (NeuAc alpha 2----3Gal beta 1----3Gal-NAc beta 1----4 (NeuAc alpha 2----8NeuAc alpha 2----8NeuAc alpha 2----3)Gal beta 1----4-Glc beta 1----1Cer).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Bovine blood coagulation factor X contains both asparagine-linked and threonine-linked oligosaccharides. The asparagine-linked chain is a mixture of a tridecasaccharide NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc and a dodecasaccharide NeuAc alpha 2 leads to 6 Gal beta 1 leads to 4GlcNAc beta 1 leads to 2Man alpha 1 leads to 6[NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GlcNAc beta 1 leads to 2Man alpha 1 leads to 3]Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc and their partial desialylation products. The threonine-linked chain is a mixture of NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuAc alpha 2 leads to 6)GalNAc, NeuAc alpha 2 leads to 3Gal beta 1 leads to 3(NeuGly alpha 2 leads to 6)GalNAc, NeuGly alpha 2 leads to 3Gal beta 1 leads to 3 (NeuAc alpha 2 leads to 6)GalNAc, and NeuGly alpha 2 leads to 3Gal beta 1 leads to 3(NeuGly alpha 2 leads to 6)GalNAc, and their partial desialized forms. The carbohydrate moieties of the factor X subgroups, factors X1 and X2, are identical.  相似文献   

11.
Glycoconjugates could play a role in cell adhesion and migration mechanisms, including the locomotive movements of the primordial germ cells (PGCs) during the development of the embryo. In the present work, we have studied by lectin histochemistry the presence of N-acetylgalactosamine (GalNAc) in the glycans of the Xenopus PGCs, as a first approach to identifying their glycoconjugates which could be involved in the migration mechanism. The PGCs were negative for three of the GalNAc-binding lectins employed (from soybean, SBA; from lima bean, LBA; and from snail, HPA). However, when sialic acid (NeuAc) was previously removed by acid hydrolysis, SBA and HPA, but not LBA, labeled the PGCs, except if the staining was combined with the beta-elimination procedure. This suggests the presence of GalNAc alpha(1,3)-linked to galactose (Gal) in O-linked oligosaccharides, in a subterminal position to NeuAc. As the PGCs were always negative for LBA, the absence of fucose alpha(1,2)-linked to subterminal Gal is suggested. With the lectin from horse gram (DBA), the PGCs were stained, although beta-elimination turned the cells negative and acid hydrolysis increased the labeling, suggesting that GalNAc(alpha)(1,3)GalNAc was in O-linked glycans in terminal and subterminal to NeuAc position.  相似文献   

12.
The distribution of sialic acid residues as well as other glycosidic sugars has been investigated in the horse oviductal isthmus during anoestrus, oestrus and pregnancy by means of lectin and pre-lectin methods. Ciliated cells and non-ciliated (secretory) cells exhibited different lectin binding profiles that were found to change during the investigated stages. Ciliated cells did not show any reactivity in the basal cytoplasm, while the supra-nuclear cytoplasm displayed a few of oligosaccharides with terminal and internal alphamannose (Man) and/or alphaglucose (Glc) during oestrus and pregnancy and a moderate presence of oligosaccharides terminating in alphafucose (Fuc) during oestrus; cilia exhibited a more complex glycoconjugate pattern for the presence of oligosaccharides terminating in N-acetylgalactosamine (GalNAc), GalNAcalpha1,3 GalNAcalpha1,3galactose(Gal)beta1,4Galbeta1,4N-acetylglucosamine(GlcNAc), Fuc, sialic acid (Neu5Ac)-aGalNAc belonging or not to the GalNAca1,3GalNAca1,3 Galb1,4 Galb1, 4GlcNAc sequence, and. alphaGalNAc and Neu5Aca 2,6Gal/GalNAc increased during oestrus. Cilia displayed terminal Galbeta1,3 GalNAc in pregnancy, terminal alphaGal in anoestrus and pregnancy and terminal or internal D-GlcNAc during anoestrus and pregnancy, respectively. The whole cytoplasm of non-ciliated cells showed oligosaccharides terminating with alphaGalNAc, Neu5Aca2,6Gal/GalNAc, Neu5Ac GalNAca 1,3GalNAcalpha1,3Galbeta1,4Galbeta1,4GlcNAc during the investigated stages, as well as GlcNAc in anoestrus and pregnancy. The supra-nuclear zone of non-ciliated cells exhibited oligosaccharides with terminal Galbeta1,4GlcNAc and internal Man during oestrus and pregnancy as well as terminal alphaGal and Fuc in oestrus and Neu5Ac-Galbeta1,3GalNAc in pregnancy. The luminal surface of non-ciliated cells showed glycans terminating with alphaGalNAc and/or Neu5Ac GalNAcalpha1,3 GalNAcalpha1,3Galbeta1,4Galbeta1,4GlcNAc in all specimens, oligosaccharides with terminal Galbeta1,4GlcNAc and internal Man during oestrus and pregnancy, Neu5Ac alpha2,6Gal/GalNAc in anoestrus and oestrus, and glycans terminating with Galbeta1,3GalNAc, Neu5A acalpha2,3 Galbeta1, 4GlcNac, Neu5ac-Galbeta1,3GalNAc, Neu5Ac-Galbeta1,4 GlcNAc in pregnancy. These findings show the presence of sialoglycoconjugates in the oviductal isthmus of the mare as well as the existence of great modifications in the glycoconjugates linked to different physiological conditions.  相似文献   

13.
The sialic acid-specific leukoagglutinating lectin from the seeds of Maackia amurensis (MAL) has been studied by the techniques of quantitative precipitin formation, hapten inhibition of precipitation, hapten inhibition using an enzyme-linked immunosorbent assay, and lectin affinity chromatography. The ability of the immobilized lectin to fractionate oligosaccharides based on their content of sialic acid has also been investigated. Our results indicate that MAL reacts with greatest affinity with the trisaccharide sequence Neu5Ac/Gc alpha 2,3Gal beta 1,4GlcNAc/Glc. The lectin requires three intact sugar units for binding and does not interact when the beta 1,4-linkage is replaced by a beta 1,3-linkage nor when the "reducing sugar" of the trisaccharide is reduced. Results from enzyme-linked immunosorbent assays show that an N-acetyllactosamine repeating sequence is not required; however, the N-acetyllactosamine repeating sequence does appear to enhance the binding of MAL to a series of glycolipids. In addition, the sialic acid may be substituted with either N-acetyl or N-glycolyl groups without reduction in binding. The C-8 and C-9 hydroxyl groups of sialic acid do not play a role in binding as shown by the strong reaction of periodate-treated glycoproteins. Comparison of the specificity of the three sialic acid-binding lectins indicates that Limax flavus agglutinin binds to Neu5Ac in any linkage and in any position in a glycoconjugate, Sambucus nigra lectin requires a disaccharide of the structure Neu5Ac alpha 2,6Gal/GalNAc, and MAL has a binding site complimentary to the trisaccharide Neu5Ac alpha 2,3Gal beta 1,4GlcNAc/Glc, to which sialic acid contributes less to the total binding affinity than for either S. nigra lectin or L. flavus agglutinin.  相似文献   

14.
Galbeta1-3GalNAc (T-disaccharide) and related molecules were assayed to describe the structural requirements of carbohydrates to bind Agaricus bisporus lectin (ABL). Results provide insight into the most relevant regions of T-disaccharide involved in the binding of ABL. It was found that monosaccharides bind ABL weakly indicating a more extended carbohydrate-binding site as compared to those involvedin the T- disaccharide specific lectins such as jacalin and peanut agglutinin. Lacto-N-biose (Galbeta1-3GlcNAc) unlike T-disaccharide, is unable to inhibit the ABL interaction, thus showing the great importance of the position of the axial C-4 hydroxyl group of GalNAc in T-disaccharide. This finding could explain the inhibitory ability of Galbeta1-6GlcNAc and lactose because C-4 and C-3 hydroxyl groups of reducing Glc, respectively, occupy a similar position as reported by conformational analysis. From the comparison of different glycolipids bearing terminal T-disaccharide bound to different linkages, it can be seen than ABL binding is even more impaired by an adjacent C-6 residual position than by the anomeric influence of T-disaccharide. Furthermore, the addition of beta-GlcNAc to the terminal T-disaccharide in C-3 position of Gal does not affect the ABL binding whereas if an anionic group such as glucuronic acid is added to C-3, the binding is partially affected. These findings demonstrate that ABL holds a particular binding nature different from that of other T-disaccharide specific lectins.   相似文献   

15.
While glycosyltransferases are known to display unidirectional enzymatic activity, recent studies suggest that some can also catalyze readily reversible reactions. Recently, we found that mammalian sialyltransferase ST3Gal-II can catalyze the formation of CMP-NeuAc from 5'-CMP in the presence of a donor containing the NeuAcα2,3Galβ1,3GalNAc unit [Chandrasekaran, E. V., et al. (2008) Biochemistry 47, 320-330]. This study shows by using [9-(3)H]- or [(14)C]sialyl mucin core 2 compounds that ST3Gal-II exchanges sialyl residues between CMP-NeuAc and the NeuAcα2,3Galβ1,3GalNAc unit and also radiolabels sialyl residues in gangliosides GD1a and GT1b, but not GM1. Exchange sialylation proceeds with relative ease, which is evident from the following. (a) Radiolabeleling of fetuin was ~2-fold stronger than that of asialo fetuin when CMP- [9-(3)H]NeuAc was generated in situ from 5'-CMP and [9-(3)H]NeuAcα2,3Galβ1,3GalNAcβ1,3Galα-O-Me by ST3Gal-II. (b) ST3Gal-II exchanged radiolabels between [(14)C]sialyl fetuin and [9-(3)H]NeuAcα2,3Galβ1,3GalNAcβ1,3Galα-O-Me by generating CMP-[(14)C]- and -[9-(3)H]NeuAc through 5'-CMP; only 20.3% (14)C and 28.0% (3)H remained with the parent compounds after the sialyl exchange. The [9-(3)H]sialyl-tagged MN glycophorin A, human chorionic gonadotropin β subunit, GlyCAM-1, CD43, fetuin, porcine Cowper's gland mucin, bovine casein macroglycopeptide, human placental glycoproteins, and haptoglobin were analyzed by using Pronase digestion, mild alkaline borohydride treatment, Biogel P6, lectin agarose, and silica gel thin layer chromatography. Sulfated and sialylated O-glycans were found in GlyCAM-1 and human placental glycoproteins. This technique has the potential to serve as an important tool as it provides a natural tag for the chemical and functional characterization of O-glycan-bearing glycoproteins.  相似文献   

16.
In this study we have investigated the structures of five sialylated trisaccharides released from bovine submaxillary mucin by alkaline borohydride treatment and isolated by high-performance liquid chromatography. Three of the trisaccharides contained NeuAc while two contained NeuGc. One oligosaccharide contained core-type 1, two contained core-type 3 and two contained core-type 5. The structures, determined by a combination of one- and two-dimensional 1H-NMR spectroscopy at 270 MHz and methylation analysis involving gas-liquid chromatography/mass spectrometry, were as follows: A4b, GalNAc alpha(1----3) [NeuAc alpha(2----6)]GalNAcol; A4c, GlcNAc beta(1----3)[NeuAc alpha(2----6)]GalNAcol; A4d, Gal beta(1----3)[NeuAc alpha(2----6)]GalNAcol; A4e, GalNAc alpha(1----3)-[NeuGc alpha(2----6)]GalNAcol; A4f, GlcNAc beta(1----3)[NeuGc alpha (2----6)]GalNAcol. The oligosaccharides occurred in the approximate molar ratios 1.0:12.0:0.3:0.2:2.0. This is the first report of oligosaccharides containing core-type 5 and of the occurrence of oligosaccharides A4b, A4e, and A4f in bovine submaxillary mucin. 1H-NMR data for structure A4e, which is a novel structure, are presented for the first time.  相似文献   

17.
It was previously reported that monoclonal IgM from two patients with gammopathy and neuropathy showed similar specificity by reacting with the same group of unidentified minor components in the ganglioside fractions of human nervous tissues (Ilyas, A. A., Quarles, R. H., Dalakas, M. C., and Brady, R. O. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 6697-6700). Enzymatic degradation, ion-exchange chromatography, and immunostaining of purified ganglioside standards on thin-layer chromatograms have now revealed that the antigenic glycolipids recognized by the IgM from these patients are gangliosides GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-1Cer(GM2), GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-3GalNAc beta 1-4Gal beta 1-4Glc beta 1-1Cer (IV4GalNAcGM1b), and GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-3GalNAc beta 1-4 beta Gal(3-2 alpha NeuAc)beta 1-4Glc beta 1-1-Cer (IV4GalNAcGD1a). The monoclonal IgM appears to be reacting with the terminal [GalNAc beta 1-4Gal(3-2 alpha NeuAc)beta 1-] moiety shared by these three gangliosides and is a useful probe for detecting small amounts of GM2, IV4GalNAcGM1b, IV4GalNAcGD1a, and other gangliosides with the same terminal sugar configuration in tissues. Species distribution studies using the antibody revealed that GM2 is present in the brains and nerves of all species examined, while IV4GalNAcGM1b and IV4GalNAcGD1a exhibit some striking species specificity. GM2, but not IV4GalNAcGD1a, is enriched in purified myelin from human brain.  相似文献   

18.
Thermodynamic analysis of carbohydrate binding by Artocarpus integrifolia (jackfruit) agglutinin (jacalin) shows that, among monosaccharides, Me alpha GalNAc (methyl-alpha-N-acetylgalactosamine) is the strongest binding ligand. Despite its strong affinity for Me alpha GalNAc and Me alpha Gal, the lectin binds very poorly when Gal and GalNAc are in alpha-linkage with other sugars such as in A- and B-blood-group trisaccharides, Gal alpha 1-3Gal and Gal alpha 1-4Gal. These binding properties are explained by considering the thermodynamic parameters in conjunction with the minimum energy conformations of these sugars. It binds to Gal beta 1-3GalNAc alpha Me with 2800-fold stronger affinity over Gal beta 1-3GalNAc beta Me. It does not bind to asialo-GM1 (monosialoganglioside) oligosaccharide. Moreover, it binds to Gal beta 1-3GalNAc alpha Ser, the authentic T (Thomsen-Friedenreich)-antigen, with about 2.5-fold greater affinity as compared with Gal beta 1-3GalNAc. Asialoglycophorin A was found to be about 169,333 times stronger an inhibitor than Gal beta 1-3GalNAc. The present study thus reveals the exquisite specificity of A. integrifolia lectin for the T-antigen. Appreciable binding of disaccharides Glc beta 1-3GalNAc and GlcNAc beta 1-3Gal and the very poor binding of beta-linked disaccharides, which instead of Gal and GalNAc contain other sugars at the reducing end, underscore the important contribution made by Gal and GalNAc at the reducing end for recognition by the lectin. The ligand-structure-dependent alterations of the c.d. spectrum in the tertiary structural region of the protein allows the placement of various sugar units in the combining region of the lectin. These studies suggest that the primary subsite (subsite A) can accommodate only Gal or GalNAc or alpha-linked Gal or GalNAc, whereas the secondary subsite (subsite B) can associate either with GalNAc beta Me or Gal beta Me. Considering these factors a likely arrangement for various disaccharides in the binding site of the lectin is proposed. Its exquisite specificity for the authentic T-antigen, Gal beta 1-3GalNAc alpha Ser, together with its virtual non-binding to A- and B-blood-group antigens, Gal beta 1-3GalNAc beta Me and asialo-GM1 should make A. integrifolia lectin a valuable probe for monitoring the expression of T-antigen on cell surfaces.  相似文献   

19.
A second lectin (SNA-II) has been isolated from elderberry (Sambucus nigra L.) bark by affinity chromatography on immobilized asialo-glycophorin. This lectin is a blood group nonspecific glycoprotein containing 7.8% carbohydrate and which is rich in asparagine/aspartic acid, glutamine/glutamic acid, glycine, valine, and leucine. Gel filtration on Superose 12 gave a single symmetrical peak corresponding to Mr, 51,000; SDS-acrylamide electrophoresis gave a single polypeptide, Mr, 30,000. Hence SNA-II appears to be a homodimer. The lectin is a Gal/GalNAc-specific lectin which is precipitated by glycoproteins containing GalNAc-terminated oligosaccharide chains (e.g., asialo-ovine submaxillary and hog gastric mucins), and by glycoproteins and polysaccharides having multiple terminal nonreducing D-galactosyl groups as occur in asialoglycophorin, asialo-laminin and Type 14 pneumococcal polysaccharide. The carbohydrate binding specificity of SNA-II was studied by sugar hapten inhibition of the asialo-glycophorin precipitation reaction. The lectin's binding site appears to be most complementary to Gal-NAc linked alpha to the C-2, C-3, or C-6 hydroxyl group of galactose. These disaccharide units are approximately 100 times more potent than melibiose, 60 times more potent than N-acetyllactosamine, and 30 times more potent than lactose. Interestingly, the blood group A-active trisaccharide containing an L-fucosyl group linked alpha 1-2 to galactose was 10-fold poorer as an inhibitor than the parent oligosaccharide (GalNAc alpha 1-3Gal), suggesting steric hindrance to binding by the alpha-L-fucosyl group; this explains the failure of the lectin to exhibit blood group A specificity.  相似文献   

20.
The conformational dynamics of the carbohydrate headgroup of ganglioside GD1a, NeuAc alpha 2-->3Gal beta 1-->3GalNAc beta 1-->4[NeuAc alpha 2-->3]Gal beta 1-->4Glc beta 1-->1Cer, anchored in a perdeuterated dodecylphosphocholine micelle in aqueous solution, were probed by high resolution NMR spectroscopy. The observed 1H/1H NOE interactions revealed conformational averaging of the terminal NeuAc alpha 2-->3Gal and Gal beta 1-->3GalNAc glycosidic linkages. The pronounced flexibility of this trisaccharide moiety was substantiated further by two-dimensional proton-detected 13C T1, T1 rho and 1H/13C NOE measurements. The anchoring effect of the micelle allowed the detection of conformational fluctuations of the headgroup on the time scale of a few hundred picoseconds. NMR experiments performed on the GD1a/DPC micelles in H2O at low temperatures permitted the observation of hydroxyl proton resonances, contributing valuable conformational information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号