首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive enzyme assay for biotin, avidin, and streptavidin   总被引:6,自引:0,他引:6  
Reciprocal enzyme assays are described for the vitamin biotin and for the biotin-binding proteins avidin and streptavidin. The assays are based on the following steps: (a) biotinylated bovine serum albumin is adsorbed onto microtiter plates; (b) streptavidin (or avidin) is bound to the biotin-coated plates; (c) biotinylated enzyme (in this case alkaline phosphatase) is then interacted with the free biotin-binding sites on the immobilized protein. For biotin assay, competition between the free vitamin and the biotinylated enzyme is carried out between steps (b) and (c). The method takes advantage of the four biotin-binding sites which characterize both avidin and streptavidin. The method is extremely versatile and accurate over a concentration range exceeding three orders of magnitude. The lower limits of detection are approximately 2 pg/ml (0.2 pg/sample) for biotin and less than 100 ng/ml (10 ng/sample) for either avidin or streptavidin.  相似文献   

2.
Streptavidin binds at low levels and high affinity to cell surfaces, the cause of which can be traced to the occurrence of a sequence containing RYD (Arg-Tyr-Asp) in the protein molecule. This binding is enhanced in the presence of biotin. Cell-bound streptavidin can be displaced by fibronectin, as well as by RGD- and RYD-containing peptides. In addition, streptavidin can displace fibronectin from cell surfaces. The RYD sequence of streptavidin thus mimics RGD (Arg-Gly-Asp), the universal recognition domain present in fibronectin and other adhesion-related molecules. The observed adhesion to cells has no relevance to biotin-binding since the RYD sequence is not part of the biotin-binding site of streptavidin. Since the use of streptavidin in avidin-biotin technology is based on its biotin-binding properties, researchers are hereby warned against its indiscriminate use in histochemical and cytochemical studies.  相似文献   

3.
The biotin-binding capacity in the wells of a streptavidin-coated PCR plate were quantified by means of a fluorescence intensity assay utilising biotin-labelled fluorescein and a colorimetric assay using biotin-labelled alkaline phosphatase. The biotin binding capacities were determined to be 59 and 58 pmol respectively.  相似文献   

4.
The high-affinity binding of biotin to avidin, streptavidin, and related proteins has been exploited for decades. However, a disadvantage of the biotin/biotin-binding protein interaction is that it is essentially irreversible under physiological conditions. Desthiobiotin is a biotin analogue that binds less tightly to biotin-binding proteins and is easily displaced by biotin. We synthesized an amine-reactive desthiobiotin derivative for labeling proteins and a desthiobiotin-agarose affinity matrix. Conjugates labeled with desthiobiotin are equivalent to their biotinylated counterparts in cell-staining and antigen-labeling applications. They also bind to streptavidin and other biotin-binding protein-based affinity columns and are recognized by anti-biotin antibodies. Fluorescent streptavidin conjugates saturated with desthiobiotin, but not biotin, bind to a cell-bound biotinylated target without further processing. Streptavidin-based ligands can be gently stripped from desthiobiotin-labeled targets with buffered biotin solutions. Thus, repeated probing with fluorescent streptavidin conjugates followed by enzyme-based detection is possible. In all applications, the desthiobiotin/biotin-binding protein complex is easily dissociated under physiological conditions by either biotin or desthiobiotin. Thus, our desthiobiotin-based reagents and techniques provide some distinct advantages over traditional 2-iminobiotin, monomeric avidin, or other affinity-based techniques.  相似文献   

5.
Pretargeted radioimmunotherapy specifically targets radiation to tumors using antibody-streptavidin conjugates followed by radiolabeled biotin. A potential barrier to this cancer therapy is the presence of endogenous biotin in serum, which can block the biotin-binding sites of the antibody-streptavidin conjugate before the administration of radiolabeled biotin. Serum-derived biotin can also be problematic in clinical diagnostic applications. Due to the extremely slow dissociation of the biotin-streptavidin complex, this endogenous biotin can irreversibly block the biotin-binding sites of streptavidin and reduce therapeutic efficacy, as well as reduce sensitivity in diagnostic assays. We tested a streptavidin mutant (SAv-Y43A), which has a 67-fold lower affinity for biotin than wild type streptavidin, and three bivalent bis-biotin constructs as replacements for wild-type streptavidin and biotin used in pretargeting and clinical diagnostics. Biotin dimers were engineered with certain parameters including water solubility, biotinidase resistance, and linker lengths long enough to span the distance between two biotin-binding sites of streptavidin. The bivalent biotins were compared to biotin in exchange, retention, and off-rate assays. The faster off-rate of SAv-Y43A allowed efficient exchange of prebound biotin by the biotin dimers. In fluorescent competition experiments, the biotin dimer ligands displayed high avidity binding and essentially irreversible retention with SAv-Y43A. The off-rate of a biotinidase-stabilized biotin dimer from SAv-Y43A was 4.36 x 10(-)(6) s(-)(1), over 640 times slower compared to biotin. These findings strongly suggest that employing a mutant streptavidin in concert with a bivalent biotin can mitigate the deleterious impact of endogenous biotin, by allowing exchange of bound biotin and retention of the biotin dimer carriers.  相似文献   

6.
Escherichia coli was engineered to intracellularly manufacture streptavidin beads. Variants of streptavidin (monomeric, core and mature full length streptavidin) were C-terminally fused to PhaC, the polyester granule forming enzyme of Cupriavidus necator. All streptavidin fusion proteins mediated formation of the respective granules in E. coli and were overproduced at the granule surface. The monomeric streptavidin showed biotin binding (0.7 ng biotin/microg bead protein) only when fused as single-chain dimer. Core streptavidin and the corresponding single-chain dimer mediated a biotin binding of about 3.9 and 1.5 ng biotin/mug bead protein, respectively. However, biotin binding of about 61 ng biotin/mug bead protein with an equilibrium dissociation constant (KD) of about 4 x 10(-8)M was obtained when mature full length streptavidin was used. Beads displaying mature full length streptavidin were characterized in detail using ELISA, competitive ELISA and FACS. Immobilisation of biotinylated enzymes or antibodies to the beads as well as the purification of biotinylated DNA was used to demonstrate the applicability of these novel streptavidin beads. This study proposes a novel method for the cheap and efficient one-step production of versatile streptavidin beads by using engineered E. coli as cell factory.  相似文献   

7.
Streptavidin was expressed on the outer membrane of E. coli as a recombinant fusion protein with an autotransporter domain called AIDA-I (adhesin involved in diffuse adherence) using autodisplay technology. The autodisplay of streptavidin was confirmed by SDS-PAGE of the outer membrane proteins, and the number of autodisplayed streptavidin molecules on a single E. coli cell was evaluated with densitometric analysis. The biotin-binding activity of the autodisplayed streptavidin was estimated after treatment with fluorescently labeled biotin by fluorescence microscopy and flow cytometry. The biotin-binding activity of the E. coli with autodisplayed streptavidin was compared with the activity of streptavidin immobilized on magnetic beads. Finally, the outer membrane presenting autodisplayed streptavidin was isolated and layered on a 96-well microplate for an immunoassay.  相似文献   

8.
Characterization and crystallization of core streptavidin   总被引:16,自引:0,他引:16  
We have characterized a streptavidin product that had been reduced to a minimal size that still retained full biotin-binding activity. This core streptavidin is proteolyzed at both ends at points that correspond closely with the termini of hen egg white avidin. Core streptavidin is more soluble than is the parent molecule. We have grown three different types of crystals of core streptavidin. The symmetry properties of these crystals prove that the molecule is a tetramer organized in tetrahedral (D2) point symmetry. The crystallographic response to the interaction of biotin with core streptavidin indicates that some conformational change accompanies ligand binding. We are attempting to determine the three-dimensional structure of streptavidin and its complex with selenobiotin from these crystals of core streptavidin.  相似文献   

9.
A small and highly fluorescent non-natural amino acid that contains an anthraniloyl group (atnDap) was incorporated into various positions of streptavidin. The positions were directed by a CGGG/CCCG four-base codon/anticodon pair. The non-natural mutants were obtained in excellent yields and some of them retained strong biotin-binding activity. The fluorescence wavelength as well as the intensity of the anthraniloyl group at position 120 were sensitive to biotin binding. These unique properties indicate that the atnDap is the most suitable non-natural amino acid for a position-specific fluorescent labeling of proteins that is highly sensitive to microenvironmental changes.  相似文献   

10.
The thermodynamic binding parameters and crystal structure for streptavidin-peptide complexes where the peptide sequences were obtained by random screening methods are reported. The affinities between streptavidin and two heptapeptides were determined by titrating calorimetric methods [Phe-Ser-His-Pro-Gln-Asn-Thr, Ka = 7944 (+/- 224) M-1, delta G degrees = -5.32 (+/- 0.01) kcal/mol, and delta H degrees = -19.34 (+/- 0.48) kcal/mol; His-Asp-His-Pro-Gln-Asn-Leu, Ka = 3542 (+/- 146) M-1, delta G degrees = -4.84 (+/- 0.03) kcal/mol, and delta H degrees = -19.00 (+/- 0.64) kcal/mol]. The crystal structure of streptavidin complexed with one of these peptides has been determined at 2.0-A resolution. The peptide (Phe-Ser-His-Pro-Gln-Asn-Thr) binds in a turn conformation with the histidine, proline, and glutamine side chains oriented inward at the biotin-binding site. A water molecule is immobilized between the histidine and glutamine side chains of the peptide and an aspartic acid side chain of the protein. Although some of the residues that participate in binding biotin also interact with the screened peptide, the peptide adopts an alternate method of utilizing binding determinants in the biotin-binding site of streptavidin.  相似文献   

11.
Streptavidin is a biotin-binding protein which has been widely used in many in vitro and in vivo applications. Because of the ease of protein recovery and availability of protease-deficient strains, the Bacillus subtilis expression-secretion system is an attractive system for streptavidin production. However, attempts to produce streptavidin using B. subtilis face the problem that cells overproducing large amounts of streptavidin suffer poor growth, presumably because of biotin deficiency. This problem cannot be solved by supplementing biotin to the culture medium, as this will saturate the biotin binding sites in streptavidin. We addressed this dilemma by engineering a B. subtilis strain (WB800BIO) which overproduces intracellular biotin. The strategy involves replacing the natural regulatory region of the B. subtilis chromosomal biotin biosynthetic operon (bioWAFDBIorf2) with an engineered one consisting of the B. subtilis groE promoter and gluconate operator. Biotin production in WB800BIO is induced by gluconate, and the level of biotin produced can be adjusted by varying the gluconate dosage. A level of gluconate was selected to allow enhanced intracellular production of biotin without getting it released into the culture medium. WB800BIO, when used as a host for streptavidin production, grows healthily in a biotin-limited medium and produces large amounts (35 to 50 mg/liter) of streptavidin, with over 80% of its biotin binding sites available for future applications.  相似文献   

12.
We applied the protein photochemically induced dynamic nuclear polarization (photo-c.i.d.n.p.) method to explore the conformation of the side chains of tyrosine, tryptophan and histidine residues in three biotin-binding proteins. The c.i.d.n.p. spectra of avidin, streptavidin and 'core' streptavidin were compared with those of their complexes with biotin and its derivatives. The data indicate that the single tyrosine residue (Tyr-33) of avidin is clearly inaccessible to the triplet flavin photo-c.i.d.n.p. probe. The same holds for all tryptophan and histidine side chains. Although the analogous Tyr-43 residue of streptavidin is also buried, at least three of the other tyrosine residues of this protein are exposed. The same conclusions apply to the truncated form of the protein, core streptavidin. As judged by the photo-c.i.d.n.p. results, complexing of avidin and streptavidin with biotin, N-epsilon-biotinyl-L-lysine (biocytin) or biotinyltyrosine has little or no effect on tyrosine accessibility in these proteins. Biotinyltyrosine can be used to probe the depth of the corresponding binding site. The accessibility of the tyrosine side chain of biotinyltyrosine in the complex demonstrates the exquisite fit of the biotin-binding cleft of avidin: only the biotin moiety appears to be accommodated, leaving the tyrosine side chain exposed.  相似文献   

13.
We have constructed a plasmid suitable for bacterial expression of in vivo-biotinylated photoprotein aequorin. The biotin tag facilitates the isolation of aequorin from crude cell extract and the direct complexation of aequorin with streptavidin for the development of highly sensitive hybridization assays, thereby avoiding the need for chemical crosslinking. The plasmid contains a biotin-acceptor coding sequence fused to an apoaequorin gene. The birA gene, encoding biotin protein ligase (BPL), is inserted downstream of the apoaequorin sequence. BPL biotinylates, posttranslationally, the acceptor domain at a unique position. Functional aequorin is generated by incubating the lysate with coelenterazine and is purified by using a monomeric avidin column that allows elution under nondenaturing conditions. The biotinylated aequorin is complexed with streptavidin and used as a reporter molecule in a hybridization assay. The assay entails immobilization of an oligonucleotide probe on microtiter wells followed by hybridization with a denatured DNA target labeled with biotin through PCR. Streptavidin-biotinylated aequorin is used for quantification of the hybrids. Luminescence is measured in the presence of excess Ca(2+). The analytical range extends from 80 amol of target DNA per well (with a signal-to-background ratio of 2.1) up to 40 fmol per well. The coefficient of variation is about 6%. In vivo-biotinylated aequorin produced from 1 liter of culture is sufficient for 300,000 hybridization assays.  相似文献   

14.
This protocol describes a simple and efficient way to label specific cell surface proteins with biophysical probes on mammalian cells. Cell surface proteins tagged with a 15-amino acid peptide are biotinylated by Escherichia coli biotin ligase (BirA), whereas endogenous proteins are not modified. The biotin group then allows sensitive and stable binding by streptavidin conjugates. This protocol describes the optimal use of BirA and streptavidin for site-specific labeling and also how to produce BirA and monovalent streptavidin. Streptavidin is tetravalent and the cross-linking of biotinylated targets disrupts many of streptavidin's applications. Monovalent streptavidin has only a single functional biotin-binding site, but retains the femtomolar affinity, low off-rate and high thermostability of wild-type streptavidin. Site-specific biotinylation and streptavidin staining take only a few minutes, while expression of BirA takes 4 d and expression of monovalent streptavidin takes 8 d.  相似文献   

15.
The biological function of prion protein (PrP) and the physiological relevance of its truncated subtypes and glycoforms is still enigmatic. In this paper, we adduce evidence that recombinant murine PrP fragment 90-231 (mPrP90-231) contains a biotin-mimicking sequence motif that causes binding of the bacterial protein streptavidin to mPrP90-231. As indicated by epitope mapping and proven by analysis of a deletion mutant (mPrP101-231), streptavidin binding is primarily mediated by the amino-terminus of mPrP90-231 with the core-binding sequence represented by residues 94-100. Competition with biotin significantly reduces the interaction pointing to an involvement of streptavidin's biotin-binding site (BBS). Since the BBS of streptavidin shares similarities with the active sites of proteins involved in biotin metabolism we speculate that biotin mimicry by truncated PrP-species may have an impact in vivo.  相似文献   

16.
Streptavidin is a biotin-binding protein which has been widely used in many in vitro and in vivo applications. Because of the ease of protein recovery and availability of protease-deficient strains, the Bacillus subtilis expression-secretion system is an attractive system for streptavidin production. However, attempts to produce streptavidin using B. subtilis face the problem that cells overproducing large amounts of streptavidin suffer poor growth, presumably because of biotin deficiency. This problem cannot be solved by supplementing biotin to the culture medium, as this will saturate the biotin binding sites in streptavidin. We addressed this dilemma by engineering a B. subtilis strain (WB800BIO) which overproduces intracellular biotin. The strategy involves replacing the natural regulatory region of the B. subtilis chromosomal biotin biosynthetic operon (bioWAFDBIorf2) with an engineered one consisting of the B. subtilis groE promoter and gluconate operator. Biotin production in WB800BIO is induced by gluconate, and the level of biotin produced can be adjusted by varying the gluconate dosage. A level of gluconate was selected to allow enhanced intracellular production of biotin without getting it released into the culture medium. WB800BIO, when used as a host for streptavidin production, grows healthily in a biotin-limited medium and produces large amounts (35 to 50 mg/liter) of streptavidin, with over 80% of its biotin binding sites available for future applications.  相似文献   

17.
Radioimmunopretargeting is based on the separate injection of a modified mAb and the radionuclide and most frequently exploits the very high avidity of biotin for streptavidin (SA). Currently, we are evaluating the therapeutic potential of directly labeled monoclonal antibody (mAb) 81C6, reactive with the extracellular matrix protein tenascin, in surgically created glioma resection cavity patients. To be able to investigate pretargeting in this setting, the synthesis of 81C6 mAb-SA conjugates was required. In the current study, we have evaluated five methods for preparing both murine 81C6 (m81C6) and human/mouse chimeric 81C6 (c81C6) SA conjugates with regard to yield, biotin-binding capacity, immunoreactivity, and molecular weight. The 81C6 mAb and SA were coupled by covalent interaction between sulfhydryl groups generated on the mAb via N-succinimidyl-S-acetylthioacetate, dithiothreitol or 2-iminothiolane (2IT), and maleimido-derivatized SA, prepared via sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) or N-succinimidyl-3-(2-pyridyldithio)-propionate. A noncovalent approach involving reaction of a biotinylated mAb, prepared using biotin caproate, and SA also was studied. The evaluation criteria were yield of mAb-SA 215 kDa monomer, as well as conjugate biotin-binding capacity and immunoreactive fraction. The optimal procedure involved activation of m81C6 or c81C6 with 30 equiv of 2IT and reaction of SA with 10 equiv of SMCC and yielded a conjugate with excellent biotin-binding capacity and immunoreactivity. The ((125)I-labeled m81C6)-2IT-SMCC-SA was stable and did not lose biotin-binding capacity after a 72 h incubation in human glioma cyst fluid in vitro. Although the conjugate was stable in murine serum in vivo, its biotin-binding capacity declined rapidly, consistent with high endogenous biotin levels in the mouse. After injection of the radioiodinated conjugate into athymic mice with subcutaneous D-54 MG human glioma xenografts, high tumor uptake (36.0 +/- 10.7% ID/g at 3 days) and excellent tumor:normal tissue ratios were observed.  相似文献   

18.
Signal Peptide does not Inhibit Binding of Biotin to Streptavidin   总被引:1,自引:0,他引:1  
Liu X  Liu J 《Biotechnology letters》2005,27(15):1067-1073
Three recombinant polypeptides of streptavidin: the full-length streptavidin with a signal peptide (rsavS), full-length streptavidin (rsavF) and core streptavidin (rsavC), were expressed in E. coli strain BL21 (DE3) and purified by Ni-NTA chromatography. Although all three recombinant streptavidins had biotin-binding activity, the stability and solubility of rsavC tetraunits were much better than those of rsavS and rsavF, indicating that signal peptide and/or extra amino acid residues in rsavS and rsavF have negative effects on streptavidin. Meanwhile, the signal peptide and extra amino acid residues in rsavS and rsavF made it difficult for polypeptides to fold into functional proteins. After refolding of denaturing-purified proteins in vitro, both the specific activities and biotin binding sites of renatured streptavidins were 1.4-times as that of proteins obtained by native Ni-NTA purification. Because the denaturing-purified rsavC is easy of refolding into functional protein, the better strategy for production of active rsavC is to isolate the protein from IPTG-induced E. coli extracts by denaturing Ni-NTA affinity chromatography followed by refolding of purified polypeptide in vitro.  相似文献   

19.
Highly specific ligand-receptor interactions generally characterize surface recognition reactions. Such processes can be simulated by streptavidin-biotin-specific binding. Biotin lipids have thus been synthesized, and their interaction with streptavidin (or avidin) at the air-water interface was directly shown by measurement of surface pressure isotherms and fluorescence microscopy. These proteins interact with the biotin lipid monolayer via specific binding or nonspecific adsorption. Both phenomena were clearly distinguished by use of the inactivated form of streptavidin. The binding of fluorescein-labeled streptavidin to monolayers was also directly observed by fluorescence microscopy. The fluorescence of the protein domains is directly related to the state of polarization of the exciting light. This anisotropy can only be explained by the formation of oriented two-dimensional biotin lipid-streptavidin domains.  相似文献   

20.
Streptavidin, a tetrameric protein produced by Streptomyces avidinii, has been used as a useful, versatile affinity tag in a variety of biological applications. The efficacy of streptavidin is derived from its extremely high binding affinity for the vitamin biotin. For the last several years, we have used genetic engineering as a primary means to enhance the properties of streptavidin and to expand the application of streptavidin as an affinity tag. In this review, we describe several genetically engineered streptavidin variants, which include a streptavidin with a reduced biotin-binding affinity, a dimeric streptavidin, and a fusion protein between streptavidin and protein A, along with their potential applications in biological science.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号