首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A predictive model was developed to estimate the dewatering characteristics of waste-activated sludges. This model utilizes the COD-nitrogen ratio of the wastewater and the organic loading rate of the process to predict sludge filterability in terms of specific resistance. A completely mixed, continuous flow secondary treatment process with solids recycle was used for the cultivation of activated sludges. The sludge wasted from this process was used in Buchner funnel specific resistance determinations. The basic concepts involved in the development of the model were supported by sludge carbohydrate, protein, and surface charge data.  相似文献   

2.
The acid precipitation of soya protein was studied in a continuous-flow tubular reactor under conditions of turbulent flow. Preliminary batchwise experiments of a semiquantitative nature were also carried out on a bench-scale reactor to better define the parameters affecting precipitate growth. The experiments indicated the dominant growth mechanism to be the aggregation of primary precipitate particles produced by the contacting of the protein and acid streams. The rate of particle growth was observed to rise with an increase in the protein concentration as well as with greater intensity of turbulence. The final mean particle size decreased with increased intensity of turbulence. A theoretical model was set up to simulate the growth of the precipitate particles.  相似文献   

3.
The use of a scroll decanter centrifuge for the removal and dewatering of affinity-flocculated yeast cell debris from a crude homogenate is described. Laboratory shear modulus measurements were used to compare the structure of flocculated and nonflocculated sediments and to indicate the dewatering conditions under which the sediment could be discharged from the centrifuge. The structure of the flocculated sediment was such that a dry beach could be used within the centrifuge while still being able to discharge the solids. The scroll decanter performance for recovery and dewatering of the flocculated homogenate was found to be independent of feed flow rate and differential scroll rate. Eighty-five percent of the solid material was recovered from the flocculated homogenate while the extent of sediment dewatering resulted in the loss of only 7% of the soluble protein in the sediment. The supernatant clarity matched that achieved by low-gravity laboratory centrifugation studies.  相似文献   

4.
During the treatment of raw domestic wastewater in the upflow anaerobic sludge blanket (UASB) reactor, the suspended solids (SS) present in the wastewater tend to influence negatively the methanogenic activity and the chemical oxygen demand (COD) conversion efficiency. These problems led to the emergence of various anaerobic sludge bed systems such as the expanded granular sludge bed (EGSB), the upflow anaerobic sludge blanket (UASB)-septic tank, the hydrolysis upflow sludge bed (HUSB), the two-stage reactor and the anaerobic hybrid (AH) reactor. However, these systems have, like the UASB reactor, limited performance with regard to complete treatment (e.g., removal of pathogens). In this respect, a new integrated approach for the anaerobic treatment of domestic wastewater is suggested. This approach combines a UASB reactor and a conventional completely stirred tank reactor (CSTR) for the treatment of the wastewater low in SS and sedimented primary sludge, respectively. The principal advantages of the proposed system are energy recovery from organic waste in an environmentally friendly way; lowering the negative effect of suspended solids in the UASB reactor; production of a high quality effluent for irrigation; and prevention of odour problems.  相似文献   

5.
An improvement in the resistance of isoelectric soya protein precipitate to capillary shear disruption was achieved by aging in a stirred tank. The aggregate strength was found to depend on the extent and duration of agitation prior to exposure to shear. An optimum value of an aging parameter Gt approximately 10(5) was determined, where G is the rms velocity gradient in the aging vessel and tis the time of aging. The disruption of precipitate aggregates by exposure to high rates of shear for short times was dependent on the rate of shear and time of exposure. The dominant mechanism of aggregate breakup was fragmentation, with erosion occurring to a lesser extent. The size of the fragments produced by shear disruption was weakly dependent on the rate of shear, with higher rates of shear producing smaller fragments.  相似文献   

6.
In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant would significantly reduce the nitrogen load of the activated sludge system. Some years ago, a novel biological process was discovered in which ammonium is converted to nitrogen gas under anoxic conditions with nitrite as the electron acceptor (anaerobic ammonium oxidation, anammox). Compared to conventional nitrification and denitrification, the aeration and carbon-source demand is reduced by over 50 and 100%, respectively. The combination of partial nitritation to produce nitrite in a first step and subsequent anaerobic ammonium oxidation in a second reactor was successfully tested on a pilot scale (3.6 m(3)) for over half a year. This report focuses on the feasibility of nitrogen removal from digester effluents from two different wastewater treatment plants (WWTPs) with the combined partial nitritation/anammox process. Nitritation was performed in a continuously stirred tank reactor (V=2.0 m(3)) without sludge retention. Some 58% of the ammonium in the supernatant was converted to nitrite. At 30 degrees C the maximum dilution rate D(x) was 0.85 d(-1), resulting in nitrite production of 0.35 kg NO(2)-N m(-3)(reactor) d(-1). The nitrate production was marginal. The anaerobic ammonium oxidation was carried out in a sequencing batch reactor (SBR, V=1.6 m(3)) with a nitrogen elimination rate of 2.4 kg N m(-3)(reactor) d(-1) during the nitrite-containing periods of the SBR cycle. Over 90% of the inlet nitrogen load to the anammox reactor was removed and the sludge production was negligible. The nitritation efficiency of the first reactor limited the overall maximum rate of nitrogen elimination.  相似文献   

7.
The kinetics of precipitation of soya protein has been examined in a tubular flow reactor with the precipitants, ammonium sulfate, ethanol, divalent calcium, and sulfuric acid. The precipitate growth profiles obtained in all cases showed the rapid formation of a precipitate phase and the attainment of a final size within 16 s. The final mean particle diameter d(m) varied with precipitating agent used in the order: sulfuric acid (12.5 mum) > ethanol (7.5 mum) approximately calcium ion (7.2 mum) > ammonium sulfate (3.1 mum). In the case of ethanol precipitation, changes in the design of the contacting section of the reactor led to differences in the precipitate growth curve. Protein solubility curves are also presented, and with the reactor data, they provide a convenient method for assessing the effect of precipitating agent on the design of protein precipitation reactors.  相似文献   

8.
Of the dewatering characteristics of activated sludges in our previous paper, the dewatering rate of sludge decreased in proportion to increasing amounts of extracellular polymer. As extracellular polymer in activated sludge was one of the important factors in the dewatering process, the change of the dewatering characteristics of thermochemically treated sludge (containing extracellular polymer) were compared with that of extracellular polymer extracted from sludge. The ultrafiltration rate of extracellular polymer flocculated by thermochemical treatment was much faster than that without treatment, indicating improved dewatering characteristics. Under the same treatment conditions, the dewatering characteristics of sludge were also much improved. The addition of the extracellular polymer treated thermochemically below pH 3 had no effect on the dewatering characteristics of the sludge. The addition of a flocculant to the thermochemically treated sludge was found to further improve the dewatering characteristics. The thermochemical treatment under low pH condition facilitated the flaking of the cake from the filter.  相似文献   

9.
The dewatering performance and fractal characteristics of alum sludge from a drinking-water treatment plant were investigated in this study. Variations in residual turbidity of supernatant, dry solid content (DS), specific resistance to filtration (SRF), floc size, fractal dimension, and zeta potential were analyzed. Sludge dewatering efficiency was evaluated by measuring both DS and SRF. Results showed that the optimum sludge dewatering efficiency was achieved at 16 mg∙L-1 flocculant dosage and pH 7. Under these conditions, the maximum DS was 54.6%, and the minimum SRF was 0.61 × 1010 m∙kg-1. Floc-size measurements demonstrated that high flocculant dosage significantly improved floc size. Correlation analysis further revealed a strong correlation between fractal dimension and floc size after flocculation. A strong correlation also existed between floc size and zeta potential, and flocculants with a higher cationic degree had a larger correlation coefficient between floc size and zeta potential. In the flocculation process, the main flocculation mechanisms involved adsorption bridging under an acidic condition, and a combination between charge neutralization and adsorption-bridging interaction under neutral and alkaline conditions.  相似文献   

10.
This study presents the performance characteristics of a plug flow phase separated anaerobic granular bed baffled reactor (GRABBR) fed with brewery wastewater at various operating conditions. The reactor achieved chemical oxygen demand (COD) removal of 93-96% with high methane production when operated at organic loading rates (OLRs) of 2.16-13.38kg COD m(-3)d(-1). The reactor configuration and microbial environment encouraged the acidogenic dominant zone to produce intermediate products suitable for degradation in the predominantly methanogenic zone. Noticeable phase separation between acidogenesis and methanogenesis mainly occurred at high OLR, involving a greater number of compartments to contribute to wastewater treatment. The highly active nature and good settling characteristics of methanogenic granular sludge offered high biomass retention and enhanced methanogenic activities within the system. The granular structure in the acidogenic dominant zone of the GRABBR was susceptible to disintegration and flotation. Methanogenic granular sludge was a multi-layered structure with Methanosaeta-like organisms dominant in the core.  相似文献   

11.
Dewaterability of waste activated sludge with ultrasound conditioning   总被引:5,自引:0,他引:5  
Feng X  Deng J  Lei H  Bai T  Fan Q  Li Z 《Bioresource technology》2009,100(3):1074-1081
This study investigated the potential benefits of ultrasound-conditioned sludge dewatering treatments with specific energy dosages from 0 to 35,000 kJ/kg total solids (TS). Capillary suction time (CST) and specific resistance of filtration (SRF) were used to evaluate sludge dewaterability. Sludge water distribution was measured by the drying test and mechanical separation methods. Both extracellular polymeric substance (EPS) content and sludge particle size were determined in an attempt to explain the observed changes in sludge dewaterability. The results indicated that application of low specific energy dosages (<4400 kJ/kg TS) slightly enhanced sludge dewaterability, but larger specific energy dosages (>4400 kJ/kg TS) significantly deteriorated sludge dewaterability. The optimal specific energy to give maximal dewaterability characteristics was found to be 800 kJ/kg TS, which generated sludge with optimal EPS concentration (400-500 mg/l) and particle size distribution (80-90 microm diameter). Subjecting sludge to a combination of cationic polymer and ultrasound pretreatments did not present any clear advantages over polymeric conditioning alone for improving sludge dewaterability. The effects of cationic polymer treatment predominated over those of ultrasound pretreatment when both were used together.  相似文献   

12.
Floc destruction and its impacts on the dewatering properties in terms of capillary suction time (CST) in the process of using flat-sheet membrane for simultaneous thickening and digestion (MSTD) of waste activated sludge were investigated. A pilot-scale MSTD reactor was used to treat waste activated sludge, and extracellular polymeric substances (EPS), soluble biopolymers, dissolved cations and the dewatering properties were measured. The results indicated that the destruction mechanisms of the MSTD process could be divided into two phases due to the variation of dissolved oxygen (DO). Polysaccharides and proteins were released in both phases, but the release patterns were different. The concentration of polysaccharides was much greater than that of proteins in Phase 1, while the ratio of proteins to polysaccharides ranged from 1.5 to 1.7. The divalent cations in supernatant significantly increased in Phase 1, while the monovalent cations in supernatant rose in Phase 2. The dewatering properties in terms of CST significantly increased in the MSTD process, and the mixed liquor suspended solids (MLSS), particle size, and biopolymers in supernatant had significant effects on the dewatering properties.  相似文献   

13.
In order to enhance performances of organics removal and nitrification for the treatment of swine wastewater containing high concentration of organic solids and nitrogen than conventional biological nitrogen removal process, a submerged membrane bioreactor (MBR) was followed by an anaerobic upflow bed filter (AUBF) reactor in this research (AUBF–MBR process). The AUBF reactor is a hybrid reactor, which is the combination of an anoxic filter for denitrification and upflow anaerobic sludge blanket (UASB) for acid fermentation. In the AUBF–MBR process, it showed a considerable enhancement of the effluent quality in terms of COD removal and nitrification. The submerged MBR could maintain more than 14,000 mg VSS/L of the biomass concentration. Total nitrogen (T-N) removal efficiency represented 60% when internal recycle ratio was three times of flow-rate (Q), although the nitrification occurred completely. Although the volatile fatty acids produced in AUBF reactor can enhance denitrification rate, but the AUBF–MBR process showed reduction of overall removal efficiency of the nitrogen due to the reduction of carbon source by methane production in the AUBF reactor compared to that of theoretical nitrogen removal efficiency.

Long-term operation of the submerged MBR showed that the throughputs of the submerged MBR were respectively 74, 63, and 31 days at 10, 15, and 30 L/m2 h (LMH) of permeate flux. Resistance to filtration by rejected solid is the primary cause of fouling, however the priority of cake resistance (Rc) and fouling resistance (Rf) with respect to filtration phenomenon was different according to the amount of permeate flux. The submerged MBR, here, achieved a steady-state flux of 15 LMH at 0.4 atm. of trans-membrane pressure (TMP) but the flux can be enhanced in the future because shear force by tangential flow will be greater when multi-layer sheets of membrane were used.  相似文献   


14.
Denitrifying granular sludge reactor holds better nitrogen removal efficiency than other kinds of denitrifying reactors, while this reactor commonly needs seeding anaerobic granular sludge and longer period for start-up in practice, which restricted the application of denitrifying granular sludge reactor. This study presented a rapid and stable start-up method for denitrifying granular sludge. An upflow sludge blanket (USB) reactor with packings was established with flocculent activated sludge for treatment of high concentration nitrite wastewater. Results showed mature denitrifying granular sludge appeared only after 15 days with highest nitrogen removal rate of 5.844 kg N/(m3 day), which was much higher than that of compared anoxic sequencing batch reactor (ASBR). No significant nitrite inhibition occurred in USB and denitrification performance was mainly influenced by hydraulic retention time, influent C/N ratio and internal reflux ratio. Hydraulic shear force created by upflow fluid, shearing of gaseous products and stable microorganisms adhesion on the packings might be the reasons for rapid achievement of granular sludge. Compared to inoculated sludge and ASBR, remarkable microbial communitiy variations were detected in USB. The dominance of Proteobacteria and Bacteroidetes and enrichment of species Pseudomonas_stutzeri should be responsible for the excellent denitrification performance, which further verified the feasibility of start-up method.  相似文献   

15.
Waste water, derived from the reprocessing of used emulsions or suspensions, contains high concentrations of emulsified mineral oil and stabilizers, as well as different additives that are needed during the treatment process. Two stirred-tank reactors and two fixed-bed reactors were used to study the biodegradation of these waste-water compounds during two-stage biological treatment. The waste water was first proceesed in an activated sludge reactor to remove easily biodegradable substances. The effluent from the first stage was treated in three parallel operating reactors: an activated sludge tank containing different amounts of powdered activated carbon (PAC, between 0 and 2%), an upflow anaerobic fixed-bed reactor and an aerobic fixed-bed reactor (trickling filter). The results from the continuous treatment were compared with laboratory batch experiments. About 60% of the influent TOC was reduced by the first activated sludge treatment. The removal efficiency increased to about 70% by using a second activated sludge stage. This degradation was comparable to the maximum degree of degradation measured in laboratory batch experiments. PAC addition to the second activated sludge tank resulted in increased degradation rates. The removal efficiency increased to about 76% when 0.1% PAC was added and to 96% with 1% PAC. The removal efficiency decreased to 84% when the proportion of PAC was further increased to 2%. Variations in the amount of PAC addition per unit influent volume in the range of 50 and 200 mg/l had no significant effect on the TOC removal. Degradation models based on the MONOD-type equation were found to be in close correlation with the results obtained from batch experiments. However, the biological removal rates measured in batch experiments did not reflect the removal capacity determined in continuous operating treatment systems.  相似文献   

16.
The wastewater treatment plants produce large quantities of biomass (sludge) that require about one-third of the total inversion and operation plant costs for their treatment. By the microorganisms immobilization it is possible to handle high cell concentration in the reactor, increasing its efficiency, reducing the loss of biomass and the wash out is avoided. Moreover, there is no cell growth then the sludge production is reduced. In this study, the COD removal and VSS variation were modeled in a tubular reactor with activated sludge immobilized in Ca-alginate. Moreover, two aspects that are commonly not considered in the performance of the actual reactors of this kind were introduced; the performance in non-steady state and the dispersion effect. The model was calibrated with an actual wastewater taken out from a Mexican wastewater treatment plant. The results of the performance of the tubular bioreactor at different scenarios (i.e., different residence time and VSS in the reactor) are presented. With longer residence times and higher VSS concentration in the Ca-alginate beads in the tubular bioreactor it is possible to increase the time operation of the bioreactor and to treat higher volumes of wastewater. During the process, the sludge generation was drastically reduced and it is possible to remove nitrogen form the wastewater making this process more attractive.  相似文献   

17.
Effect of dissolved oxygen concentration on sludge settleability   总被引:4,自引:0,他引:4  
This laboratory study presents a detailed evaluation of the effects of dissolved oxygen concentration and accumulation of storage polymers on sludge settleability in activated sludge systems with an aerobic selector. The oxygen and substrate availability regime were simulated in laboratory sequencing batch reactor systems. The experiments showed that low dissolved oxygen concentration (1.1 mg O2 l–1) had a strong negative effect on sludge settleability, leading to the proliferation of filamentous bacteria (Thiothrix spp., Type 021N and Type 1851). This negative effect was stronger at high chemical oxygen demand loading rate. This indicates that a compartmentalised (plug flow) aerobic contact tank, designed at short hydraulic residence time to guarantee a strong substrate gradient, with low dissolved oxygen concentration, might be worse for sludge settleability than an "overdesigned" completely mixed contact tank. Contrary to the general hypothesis, the maximum specific acetate uptake rate, poly--hydroxybutyrate production rate, and resistance to short starvation periods are similar in both poor- and well-settling sludge. The results of this study support our previous hypothesis on the importance of substrate gradients for the development of filamentous structures in biological flocs, from soluble organic substrate gradients to dissolved oxygen gradients in sludge flocs.  相似文献   

18.
Xing  Meiyan  Li  Cenran  Jiang  Jinzhou  Wang  Yin  Yang  Jian 《Applied microbiology and biotechnology》2017,101(4):1643-1652

To improve excess sludge dewaterability, a two-stage vermifilter was developed to qualitatively and quantitatively analyze sludge physico-chemical properties (fractal dimension, zeta potential, extracellular polymeric substances (EPS), particle size distribution, etc.) and to correlate them with sludge dewatering characteristics (specific resistance to filtration (SRF) and capillary suction time (CST)). Results demonstrated that sludge dewatering performance was significantly improved after the primary vermifilter VF1 and the second-stage vermifilter VF2. In addition, the further VF2 treatment exhibited higher effects on sludge dewatering performance. The particle boundary of sludge after VF2 treatment was clearer and smoother than VF1 sludge (VF1S), apart from the fact that sludge morphological structure got denser and more compact. Comparing with VF1S, the fractal dimension D1 calculated within 1D topological space was closer to 1 after VF2 treatment, and the fractal dimension D2 within 2D topological space closer to 2, indicating a better dewatering performance after VF2 treatment. Additionally, the changes of sludge floc surface properties (such as zeta potential and EPS) resulted in small particles agglomerating into larger ones and then the increase of particle diameter. In summary, the two-stage vermifilter got a better sludge dewatering performance, and thus beneficial for subsequent processing of sludge.

  相似文献   

19.
Design and analysis of a solar reactor for anaerobic wastewater treatment   总被引:1,自引:0,他引:1  
The aim of this research was to design a solar heated reactor system to enhance the anaerobic treatment of wastewater or biological sludge at temperatures higher than the ambient air temperature. For the proposed reactor system, the solar energy absorbed by flat plate collectors was transferred to a heat storage tank, which continuously supplied an anaerobic-filter reactor with water at a maximum temperature of 35 degrees C. The packed reactor was a metallic cylindrical tank with a peripheral twin-wall enclosure. Inside this enclosure was circulated warm water from the heat storage tank. Furthermore, a mathematical model was developed for the prediction of the temperature distribution within the reactor under steady state conditions. Preliminary results based on model simulations performed with meteorological data from various geographical regions of the world suggested that the proposed solar reactor system could be a promising and environmentally friendly approach for anaerobic treatment of wastewater and biological sludge.  相似文献   

20.
The semi-pilot scale of continuous flow type hydrothermal reactor has been investigated to separate hemicellulose fraction from corncob. We obtained the effective recovery of hemicellulose using tubular type reactor at 200 °C for 10 min. From constituent sugar analysis of corncob, 82.2% of xylan fraction was recovered as mixture of xylose, xylooligosaccharides and higher-xylooligosaccharide which has more than DP 10. During purification of solubilized fraction by hydrothermal reaction such as ultrafiltration and ion exchange resin, higher-xylooligosaccharide was recovered as the precipitate. This precipitate was identified as non-blanched xylan fraction which has from DP 11 to DP 21 mainly. In this system, only a small amount of furfural has been generated. This tubular reactor has a characteristic controllability of thermal history, and seems to be effective for sugar recovery from soft biomass like corncob.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号