首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Hayatsu 《Biochemistry》1976,15(12):2677-2682
Semicarbazide reacted rapidly with 5,6-dihydrocytidine-6-sulfonate, which was formed from cytidine by addition of bisulfite across the 5,6-double bond. The transaminated product, 5,6-dihydro-4-semicarbazido-2-ketotopyrimidine-6-sulfonate ribofuranoside, was identified by comparison with that formed by treatment of 4-semicarbazido-2-ketopyrimidine ribofuranoside with bisulfite. The progress of the transamination was monitored spectrophotometrically by use of a strong absorbance of the product in alkali. The reaction between cytidine and the semicarbazide-bisulfite mixture was optimal at pH 4.5. Complete transformation of cytidine into the product required only 5 min with the use of 3M semicarbazide-1M sodium bisulfite, pH 5.0, at the reaction temperature 37 degrees C. The product was stable in unbuffered solution but in phosphate buffers it underwent elimination of bisulfite to give 4-semicarbazido-2-ketopyrimidine ribofuranoside. The rate of the elimination at pH 7.0 and 37 degrees C increased proportionally with the increase of the phosphate concentration. Complete elimination was obtained by treatment with 1 M sodium phosphate for 2 h. When heat-denatured calf-thymus DNA was treated with 3 M semicarbazide-1 M bisulfite at 37 degrees C and pH 5.0 the transamination of reactive cytosine residues was completed by 10 min of incubation. At 20 degrees C, it required 85 min of incubation. Cytosine residues in native DNA did not react at all even by prolonged incubations. The modified DNA samples were further treated with a phosphate buffer at pH 7, producing 4-semicarbazido-2-ketopyrimidine residues in the DNA. Analysis of the base compositions of these samples by perchloric acid hydrolysis showed that the modification was selective to cytosine, which had been expected from studies with monomers. It also showed that the reactive cytosine residues in the denatured DNA, constitute about 80% of the total cytosine, which was consistent with the view that heat-denatured DNA still contains a considerable amount of secondary structure. The semicarbazide-bisulfite modification is expected to be a sensitive method to locate cytosine residues in single-stranded regions of polynucleotides.  相似文献   

2.
The reaction of HeLa-cell 5.8S rRNA with NaHSO3 under conditions in which exposed cytidine residues are deaminated to uridine was studied. It was possible to estimate the reactivities of most of the 46 cytidine residues in the nucleotide sequence by comparing 'fingerprints' of the bisulphite-treated RNA with those of untreated RNA. The findings were consistent with the main features of the secondary-structure model for mammalian 5.85S rRNA proposed by Nazar, Sitz, & Busch [J. Biol. Chem (1975) 250, 8591--8597]. Five out of six regions that are depicted in the model as single-stranded loops contain cytidine residues that are reactive towards bisulphite at 25 degrees C (the other loop contains no cytidine). The cytidine residue nearest to the 3'-terminus is also reactive. Several cytidines residues that are internally located within proposed double-helical regions show little or no reactivity towards bisulphite, but the cytidine residues of several C.G pairs at the ends of helical regions show some reactivity, and one of the proposed loops appears to contain six nucleotides, rather than the minimum of four suggested by the primary structure. Two cytidine residues that are thought to be 'looped out' by small helix imperfections also show some reactivity.  相似文献   

3.
The reaction of O-beta-diethylaminoethylhydroxylamine (O-beta-HA) with cytidine was studied and its mechanism was shown to be analogous to that of the reaction of hydroxylamine of O-methylhydroxylamine with cytidine. In experiments involving reaction of denatured DNA with O-beta-HA., Sephadex G-15 columns were used for the quantitative separation of normal and modified nucleosides after enzymatic hydrolysis of modified DNA by exonuclease A5 followed by alkaline phosphatase treatment. DNA cytidine residues of free cytidine with O-beta-HA. Modified cytidines can form complex with phosphotungstic acid (PTA). It was shown that one mole of PTA was bound per one mole of modified cytidine either in DNA or in free state. Electron microscopic examination of denatured DNA molecules modified by O-beta-HA and reacted with PTA revealed linear arrays of electron-scattering spots which presumably correspond to PTA molecules complexed with modified cytidine in DNA chains.  相似文献   

4.
Covalent modifications of nucleobases are thought to play an important role in regulating the functions of DNA and various cellular RNA types. Perhaps the best characterized is DNA methylation on cytosine (methyl tag attached to carbon 5 position) and such modification has also been detected in stable and long-lived RNA molecules. In this work, we propose a novel procedure enabling very sensitive quantification of methylcytidine and other ribonucleosides, based on reversed phase liquid chromatography with inductively coupled plasma mass spectrometry (ICP-MS) detection. The procedure relies on labeling ribose residues with osmium, by formation of a ternary complex between cis-diol ribose groups, hexavalent osmium (K(2)OsO(2)(OH)(4)) and tetramethylethylenediamine (TEMED). The derivatization reaction was carried out with 50?:?1 molar excess of Os to ribonucleoside, pH 4, for 2 h at room temperature. The structures of Os-labeled cytidine and methylcytidine were confirmed by electrospray ionization mass spectrometry. The separation of Os-labeled cytidine (C), uridine (U), 5-methylcytidine (5mC) and guanosine (G) was achieved on C18 column (Gemini, 150 × 3 mm, 5 μm) with isocratic elution (0.05% triethylamine + 6 mmol L(-1) ammonium acetate, pH 4.4: methanol (85?:?15)) and a total flow rate 0.6 mL min(-1). The column effluent was on-line introduced to ICP-MS (a model 7500 ce, Agilent Technologies) for specific detection at (189)Os. Calibration was performed within the concentration range 0-200 nmol L(-1) of each ribonucleoside and the analytical figures of merit were evaluated. For 100 μL injection, the detection limits for C, U, 5mC, G were 24, 38, 21 and 28 pmol L(-1), respectively. While introducing Os(vi)-TEMED to the column, it eluted in the dead volume and the detection limit for osmium was 20 pmol L(-1). The results obtained in this work might be helpful in the analysis of RNA digests, providing quantitative data on the ribonucleoside composition and RNA methylation (measured as the percentage of methylated cytidines with respect to total RNA cytidines).  相似文献   

5.
RNA produced from a number of genes on the mitochondrial (mt) DNA of Physarum polycephalum have nucleotides inserted at specific sites in their sequence. These insertions are spaced at approximately 25 nucleotide intervals and create open reading frames in mRNA and functional structure in tRNAs and rRNAs. Although most of the insertions at a site are single cytidines; single uridines and certain dinucleotides containing adenosine and guanosine as well as cytidine and uridine are also occasionally inserted at certain sites. This mixed nucleotide insertional RNA editing is unique among currently characterized editing systems.  相似文献   

6.
D M Anderson  W R Folk 《Biochemistry》1976,15(5):1022-1030
Iodination of DNA by the reaction originally described by S. L. Commerford ((1971), Biochemistry 10, 1993) is extremely sensitive to the secondary structure of the DNA. Cytidines in denatured simian virus 40 (SV40) DNA react at a slightly slower rate than free cytidine monophosphate; hydrogen-bonded cytidines in SV40 form I DNA are iodinated considerably more slowly; elimination of the negative supercoils in form I DNA by conversion to form II or form III reduces reactivity even further. The residual reactivity of form II or form III duplex DNA is not due to preferential iodination of unpaired cytidines near phosphodiester bond breaks; rather iodination occurs throughout the molecule. Cytidine monophosphate has been used as a model for DNA, to enable spectral measurements of its reaction with iodine and T1C13. At temperatures above 42 degrees C and at pH 5.0, formation of 5-iodocytidine is limited by the rate of formation of an intermediate, probably 5-iodo-6-hydroxydihydrocytidine. At lower temperatures, the conversion of intermediate to product is rate limiting, but can be accelerated by lowering the pH. By appropriate adjustment of pH, or temperature, the formation of intermediate or its conversion to product can be accelerated. Iodination destabilizes the DNA duplex. Iodocytosines in SV40 DNA are preferentially removed by S1 nuclease. Heavily iodinated DNA does not reassociate normally, but DNA with only 5-10% of its cytosines iodinated appears to reassociate with normal kinetics, if duplex formation is measured by hydroxylapatite chromatography. Conditions are described to permit preparation of DNA, which reassociates normally, having a specific activity of 10(8) cpm/mug.  相似文献   

7.
The bisulfite catalyzed transamination of cytidine and cytosine has been reported to be single strand specific, but local thermal instabilities of the DNA double helix, coupled with the extreme sensitivity of the Biotin-Avidin revelation methods, allows the random labelling of cytosines in d.s. DNA to detectable levels for those purposes where the overall label can be very low. We have evaluated the use of this reaction to prepare double stranded DNA molecules containing N4-aminoethyl-cytosine (4-aeC). After this step 4-aeC residues can be conjugated to biotinyl-n-hydroxysuccinimide ester yielding biotinylated DNA. This reaction allows the massive production of biotinylated probes. Labelled DNA can serve as molecular weight marker and positive control in Southern-blots. Moreover it can be useful in the study of DNA-protein interaction and in the isolation of d.s. DNA-binding proteins through chromatographic procedures.  相似文献   

8.
9.
It is shown that component analysis could be applied to study the UV difference spectra of cytidine oligomers and hairpin oligonucleotides with cytidines in the loop region in order to account for the melting and titration results in terms of cytidine stacking and protonation. Upon acid titration, the dC(10) oligomer undergoes cooperative conformational transition at pH 6.3 accompanied by protonation and formation of the i-structure with half of the residues protonated. The stability of the hemiprotonated structure increases with decreasing pH, the i-structure persisting still in the region of pH相似文献   

10.
Synthesis of 1,N6-etheno-2'-deoxyadenosine, 3,N4-etheno-2'-deoxycytidine, and further chemistry on both deoxy and ribo series etheno nucleosides produces the corresponding phosphoramidites. These novel phosphoramidites are introduced selectively, quantitatively, and at specific positions at single or multiple sites into DNA or RNA sequences. The purification and chemistry involved in the synthesis of these products has been optimized to achieve the purity in excess of 99%. The resulting phosphoramidites were tested for their ability to couple and produce poly deoxy and ribonucleotides by solid phase chemistry. The coupling efficiency achieved was greater than 99% per step. Due to the instability of these etheno compounds in acidic and basic medium, various criteria to obtain pure oligomers have been established. The selective introduction of these fluorescent nucleosides into defined sequence DNA and RNA molecule will greatly facilitate the structure-function studies of various RNAs, protein-RNA structures, and DNA-RNA based diagnostics applications. The characteristic and high fluorescent intensity (detection below 1 x 10(-9) M for adenosine sites and below 1 x 10(-7) M for cytidine sites) is particularly suited for the biochemical and biological research and product development applications. The usefulness of these etheno containing modified sequences as sequencing and amplification primers is demonstrated by their full participation in polymerase chain reaction experiments.  相似文献   

11.
Cytosine in nucleic acids can be modified by treatment with a mixture of bisulfite and hydrazine. The reaction is specific for single-stranded regions of nucleic acids and the product is N4-aminocytosine. Bromopyruvate has been used for alkylation of protein SH groups and through its 2-oxo group it can form a hydrazone with N4-aminocytosine. Escherichia coli ribosomal 30S subunits were treated with 1 M sodium bisulfite + 2 M hydrazine in the presence of 10 mM MgCl2 at pH 7.0 and 37 degrees C for 30 min. By this treatment, 2.4 cytosine residues/molecule 16S rRNA were derivatized into N4-aminocytosines. 35S-labeled 30S subunits were modified in this way and then treated with 10 mM bromopyruvate at pH 8.0 and 37 degrees C for 5 min. Analysis in sodium dodecyl sulfate/sucrose density gradient centrifugation showed co-sedimentation of a part of the 35S radioactivity with the RNA. The co-sedimentation was dependent on both the bisulfite/hydrazine and the bromopyruvate treatments. The RNA-protein complex was prepared from unlabeled 30S subunits. The protein portion was labeled with 125I, the RNA portion was digested with nucleases, and then the hydrazone linkage between the protein and oligonucleotides was cleaved by treatment with 0.2 M HCl. The oligonucleotides formed were removed by dialysis and the protein was identified as S4 by two-dimensional electrophoresis and by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The results indicate that the cysteinyl residue of protein S4 at position 31 from the N-terminus is located close to a cytosine residue which is non-base-paired and easily accessible by the externally present bisulfite/hydrazine reagent.  相似文献   

12.
The selective modification of cytidine, uridine, guanosine and dihydrouridine residues in 32P-labelled yeast phenylalanine transfer RNA has been studied by the use of specific reagents.The selective modification of cytidine residues with the reagent methoxyamine is described. Of the six cytidines in the single-stranded regions of the cloverleaf formula, only two are completely reactive, C74 and C75 at the 3′-terminus. Cm32 in the anticodon loop is reactive to only a small extent.The selective modifications of uridine and guanosine residues with 1-cyclohexyl 3-[2-morpholino(4)-ethyl] carbodiimide methotosylate, is described. The reagent is also shown to be reactive with dihydrouridine. In the single-stranded regions of the secondary structure of yeast phenylalanine transfer RNA there are 16 base residues which this reagent could be specific for. However, only G20, Gm34 and U47 are extensively modified, whilst U33 and D16 are partially modified. G18 is modified to a very small extent.The results obtained in this study are also in good agreement with previous chemical modification studied by other workers, carried out on unlabelled yeast phenylalanine transfer RNA using different reagents to the ones described here.The pattern of chemical modification is compared with the three-dimensional structure obtained by an X-ray crystallographic analysis of the same tRNA species. The correlation between exposed regions of the model and the regions of chemical reactivity are everywhere consistent.  相似文献   

13.
14.
A new method of incorporation of tritium into nucleic acids with an accompanying conversion of cytosine to uracil is proposed. The method is based on the reaction of nucleic acids with bisulfite in the presence of 3H2O. Under certain conditions poly(C) is quantitatively converted to a radioactive poly(U), whereas similar bisulfite treatment of poly(U) does not result in any tritium incorporation. Specificity of the reaction is confirmed by the results of analysis of modified tRNA and rRNA. Incubation of tRNA with bisulfite and 3H2O does not lead to cleavage of the polynucleotide chain. Similar treatment of the denatured DNA results in tritium incorporation into DNA which is accompanied by a conversion of cytosine to uracil. There is virtually no reaction between native DNA and bisulfite. Only certain cytosone residues in yeast tRNAVal/2a interact with bisulfate providing that reaction is carried out under sufficiently mild conditions.  相似文献   

15.
16.
Transamination with bifunctional amines in the presence of bisulfite has been used to attach side chains of variable length to the N4-position of single stranded cytidine residues in E. coli tRNAfMet. Such side chains, terminating in reactive primary amino groups, have been coupled to a variety of N-hydroxysuccinimide esters. The resulting modified tRNAs carry protein affinity labeling groups capable of covalent reaction with a variety of amino acids.  相似文献   

17.
The combined effect of bisulfite and a nitrogen nucleophile, i.e. semicarbazide, methoxyamine or hydroxylamine, to chemically modify cytosine and to cause mutation and inactivation of bacteriophage lambda was investigated. A rapid transamination of cytidine with each of the amines took place in the presence of bisulfite, and the reaction product was solely the N(4)-transaminated 5,6-dihydrocytidine-6-sulfonate. Modifications of cytidine with bisulfite alone and with the nitrogen nucleophile alone were much slower reactions than those using a combination of bisulfite and the nucleophile. Whereas the product of the modification with the bisulfite/semicarbazide, 5,6-dihydro-4-semicarbazido-2-ketopyrimidine ribofuranoside-6-sulfonate, is convertible to 4-semicarbazido-2-ketopyrimidine ribofuranoside by treatment with a phosphate buffer, the products of the modification with the bisulfite/methoxyamine and with the bisulfite/hydroxylamine, i.e. 4-methoxy-5,6-dihydrocytidine-6-sulfonate and 4-hydroxy-5,6-dihydrocytidine-6-sulfonate, were stable in phosphate buffer.Inactivation and the “clear” mutation of bacteriophage lambda were observed when the phage was treated with sodium bisulfite in the presence of semicarbazide, methoxyamine or hydroxylamine. Under the conditions used, only very small increases in the mutation frequency were obtained by treatment of the phage with bisulfite alone or with the base alone. It was concluded that the residues, 5,6-dihydro-4-semicarbazido-2-ketopyrimidine-6-sulfonate, 4-methoxy-5, 6-dihydrocytosine-6-sulfonate and 4-hydroxy-5,6-dihydrocytosine-6-sulfonate in DNA are the causes of the mutation.When phage that had been inactivated by the semicarbazide/bisulfite reagent was subsequently treated with a phosphate buffer, a reactivation took place. The rate of the reactivation increased as the concentration of phosphate in the buffer increased. This reactivation was not accompanied by change in the mutation frequency. No reactivation was observed after a similar incubation when the prior inactivation had been induced by either methoxyamine/bisulfite or hydroxylamine/bisulfite. These results indicate that the 4-semicarbazido-2-ketopyrimidine residue is also mutagenic but is less lethal than the corresponding 5,6-dihydro-6-sulfonate structure.These results offer the first clear example of the co-operative mutagenic action of two different reagents.  相似文献   

18.
Analysis of methylated DNA, which refers to 5-methycytosine (5mC) versus cytosine (C) at specific loci in genomic DNA (gDNA), has received increased attention in epigenomics, particularly in the area of cancer biomarkers. Many different methods for analysis of methylated DNA rely on initial reaction of gDNA with concentrated acidic sodium bisulfite to quantitatively convert C to uracil (U) via sulfonation of denatured, single-stranded gDNA under conditions where 5mC is resistant to analogous sulfonation leading to thymine (T). These methods typically employ polymerase chain reaction (PCR) amplification after bisulfite conversion, thereby leading to readily detectable amounts of amplicons where T and C are measured as surrogates for C and 5mC in the original unconverted gDNA. However, incomplete bisulfite conversion of C in gDNA has been reported to be a common source of error in analysis of methylated DNA. Incomplete conversion can be revealed during the course of bisulfite sequencing, which is the generally accepted “gold standard” for analysis of methylated DNA. Previous bisulfite sequencing investigations of conventional predenaturation of gDNA with NaOH followed by the use of bisulfite containing added urea to maintain denaturation and thus mitigate incomplete conversion of C have been reported to give conflicting results. The current study describes a new approach where conventional predenaturation of gDNA with NaOH is instead achieved with formamide and maintains denaturation during subsequent sample handling and sulfonation. This formamide-based method was applied to 46 formalin-fixed/paraffin-embedded (FFPE) biopsy tissue specimens from well-characterized patients with primary prostate cancer. These specimens were representative of difficult-to-analyze samples due to the chemically compromised nature of the gDNA, which was recovered by modifying the protocol for a commercially available total RNA/DNA extraction kit (RecoverALL). An additional novel aspect of this study was analysis of CpG-rich promoter regions of two prostate cancer-related genes: glutathione S-transferase pi (GSTPi) and retinoic acid receptor beta2 (RARβ2). High-quality bisulfite sequencing results were obtained for both genes in 43 of 46 (93%) specimens. Detection of methylated GSTPi and RARβ2 genes was significantly associated with primary prostate cancer as compared with the benign prostate (Fisher’s exact test, P < 0.001). The sensitivity and specificity of detection of methylated GSTPi and RARβ2 genes were 86% and 100% and 91% and 100%, respectively. Moreover, the presence of either methylated gene was detected in primary prostate cancer with sensitivity and specificity of 100% and 100%, respectively. The results demonstrated a high degree of reliability of formamide-based denaturation and bisulfite conversion that should extend, generally, to FFPE and other types of samples intended for any analytical method predicated on bisulfite conversion. This pilot study also demonstrated the efficacy of determining methylation of these two genes with high sensitivity and specificity in FFPE biopsy tissue specimens. Moreover, the results showed a highly significant association of methylated GSTPi and RARβ2 genes with primary prostate cancer. Finally, this improved procedure for determining these two methylated genes may allow the detection of prostate cancer cells in core biopsy specimens with insufficient numbers of cells and poor morphology.  相似文献   

19.
The human cytidine deaminase APOBEC3G (A3G) is a potent inhibitor of retroviruses and transposable elements and is able to deaminate cytidines to uridines in single-stranded DNA replication intermediates. A3G contains two canonical cytidine deaminase domains (CDAs), of which only the C-terminal one is known to mediate cytidine deamination. By exploiting the crystal structure of the related tetrameric APOBEC2 (A2) protein, we identified residues within A3G that have the potential to mediate oligomerization of the protein. Using yeast two-hybrid assays, co-immunoprecipitation, and chemical crosslinking, we show that tyrosine-124 and tryptophan-127 within the enzymatically inactive N-terminal CDA domain mediate A3G oligomerization, and this coincides with packaging into HIV-1 virions. In addition to the importance of specific residues in A3G, oligomerization is also shown to be RNA-dependent. Homology modelling of A3G onto the A2 template structure indicates an accumulation of positive charge in a pocket formed by a putative dimer interface. Substitution of arginine residues at positions 24, 30, and 136 within this pocket resulted in reduced virus inhibition, virion packaging, and oligomerization. Consistent with RNA serving a central role in all these activities, the oligomerization-deficient A3G proteins associated less efficiently with several cellular RNA molecules. Accordingly, we propose that occupation of the positively charged pocket by RNA promotes A3G oligomerization, packaging into virions and antiviral function.  相似文献   

20.
DNA ligase from the hyperthermophilic marine archaeon Pyrococcus furiosus (Pfu DNA ligase) synthesizes adenosine 5'-tetraphosphate (p4A) and dinucleoside polyphosphates by displacement of the adenosine 5'-monophosphate (AMP) from the Pfu DNA ligase-AMP (E-AMP) complex with tripolyphosphate (P3), nucleoside triphosphates (NTP), or nucleoside diphosphates (NDP). The experiments were performed in the presence of 1-2 microM [alpha-32P]ATP and millimolar concentrations of NTP or NDP. Relative rates of synthesis (%) of the following adenosine(5')tetraphospho(5')nucleosides (Ap4N) were observed: Ap4guanosine (Ap4G) (from GTP, 100); Ap4deoxythymidine (Ap4dT) (from dTTP, 95); Ap4xanthosine (Ap4X) (from XTP, 94); Ap4deoxycytidine (Ap4dC) (from dCTP, 64); Ap4cytidine (Ap4C) (from CTP, 60); Ap4deoxyguanosine (Ap4dG) (from dGTP, 58); Ap4uridine (Ap4U) (from UTP, <3). The relative rate of synthesis (%) of adenosine(5')triphospho(5')nucleosides (Ap3N) were: Ap3guanosine (Ap3G) (from GDP, 100); Ap3xanthosine (Ap3X) (from XDP, 110); Ap3cytidine (Ap3C) (from CDP, 42); Ap3adenosine (Ap3A) (from ADP, <1). In general, the rate of synthesis of Ap4N was double that of the corresponding Ap3N. The enzyme presented optimum activity at a pH value of 7.2-7.5, in the presence of 4 mM Mg2+, and at 70 degrees C. The apparent Km values for ATP and GTP in the synthesis of Ap4G were about 0.001 and 0.4mM, respectively, lower values than those described for other DNA or RNA ligases. Pfu DNA ligase is used in the ligase chain reaction (LCR) and some of the reactions here reported [in particular the synthesis of Ap4adenosine (Ap4A)] could take place during the course of that reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号