共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper describes an investigation into the biomechanical effects of load carriage dynamics on human locomotion performance. A whole body, inverse dynamics gait model has been developed which uses only kinematic input data to define the gait cycle. To provide input data, three-dimensional gait measurements have been conducted to capture whole body motion while carrying a backpack. A nonlinear suspension model is employed to describe the backpack dynamics. The model parameters for a particular backpack system can be identified using a dynamic load carriage test-rig. Biomechanical assessments have been conducted based on combined gait and pack simulations. It was found that the backpack suspension stiffness and damping have little effect on human locomotion energetics. However, decreasing suspension stiffness offers important biomechanical advantages. The peak values of vertical pack force, acting on the trunk, and lower limb joint loads are all moderated. This would reduce shoulder strap pressures and the risk of injury when heavy loads are carried. 相似文献
2.
Variation of muscle stiffness with force at increasing speeds of shortening 总被引:8,自引:3,他引:8 下载免费PDF全文
《The Journal of general physiology》1975,66(3):287-302
Single frog skeletal muscle fibers were attached to a servo motor and force transducer by knotting the tendons to pieces of wire at the fiber insertions. Small amplitude, high frequency sinusoidal length changes were then applied during tetani while fibers contracted both isometrically and isotonically at various constant velocities. The amplitude of the resulting force oscillation provides a relative measure of muscle stiffness. It is shown from an analysis of the transient force responses observed after sudden changes in muscle length applied both at full and reduced overlap and during the rising phase of short tetani that these responses can be explained on the basis of varying numbers of cross bridges attached at the time of the length step. Therefore, the stiffness measured by the high frequency length oscillation method is taken to be directly proportional to the number of cross bridges attached to thin filament sites. It is found that muscle stiffness measured in this way falls with increasing shortening velocity, but not as rapidly as the force. The results suggest that at the maximum velocity of shortening, when the external force is zero, muscle stiffness is still substantial. The findings are interpreted in terms of a specific model for muscle contraction in which the maximum velocity of shortening under zero external load arises when a force balance is attained between attached cross bridges some of which are aiding and others opposing shortening. Other interpretations of these results are also discussed. 相似文献
3.
A human walker vaults up and over each stance limb like an inverted pendulum. This similarity suggests that the vertical motion of a walker's center of mass reduces metabolic cost by providing a mechanism for pendulum-like mechanical energy exchange. Alternatively, some researchers have hypothesized that minimizing vertical movements of the center of mass during walking minimizes the metabolic cost, and this view remains prevalent in clinical gait analysis. We examined the relationship between vertical movement and metabolic cost by having human subjects walk normally and with minimal center of mass vertical movement ("flat-trajectory walking"). In flat-trajectory walking, subjects reduced center of mass vertical displacement by an average of 69% (P = 0.0001) but consumed approximately twice as much metabolic energy over a range of speeds (0.7-1.8 m/s) (P = 0.0001). In flat-trajectory walking, passive pendulum-like mechanical energy exchange provided only a small portion of the energy required to accelerate the center of mass because gravitational potential energy fluctuated minimally. Thus, despite the smaller vertical movements in flat-trajectory walking, the net external mechanical work needed to move the center of mass was similar in both types of walking (P = 0.73). Subjects walked with more flexed stance limbs in flat-trajectory walking (P < 0.001), and the resultant increase in stance limb force generation likely helped cause the doubling in metabolic cost compared with normal walking. Regardless of the cause, these findings clearly demonstrate that human walkers consume substantially more metabolic energy when they minimize vertical motion. 相似文献
4.
This study was designed to investigate the capability of the joints and segments to reduce transmission of forces during load carriage. Eleven subjects were required to carry a backpack loaded with 40% of their body weight and to walk at 6 speeds increasing from 0.6 to 1.6 ms(-1) in increments of 0.2 ms(-1), and then decreasing in the same manner. Subjects were filmed in 3-dimensions, but analysis of shock transmission ratio (TR) was limited to the sagittal plane. Shock transmission was measured as the ratio of peak vertical accelerations (ankle:head, ankle:knee, and knee:head) measured immediately following foot strike. TR for all ratios increased significantly as a function of increasing speed. TR from the ankle to the head showed no significant increase as a function of load carriage, but did increase as a function of load in transmission from knee to head. A significant interaction effect revealed that during load carriage at the higher speeds the acceleration of the ankle and knee decreased below that for the unloaded conditions. These findings suggest that the potentially injurious effects of previously observed increased ground reaction forces and increased joint stiffness while walking with loads are offset by adaptations in the gait pattern that maintain force transmission at acceptable levels. Increased variability in the acceleration of the head and in the transmission ratios suggest a potentially destabilizing effect of load carriage on the head trajectory. 相似文献
5.
A ubiquitous characteristic of elderly and patients with gait disabilities is that they walk slower than healthy controls. Many clinicians assume these patients walk slower to improve their stability, just as healthy people slow down when walking across ice. However, walking slower also leads to greater variability, which is often assumed to imply deteriorated stability. If this were true, then slowing down would be completely antithetical to the goal of maintaining stability. This study sought to resolve this paradox by directly quantifying the sensitivity of the locomotor system to local perturbations that are manifested as natural kinematic variability. Eleven young healthy subjects walked on a motorized treadmill at five different speeds. Three-dimensional movements of a single marker placed over the first thoracic vertebra were recorded during continuous walking. Mean stride-to-stride standard deviations and maximum finite-time Lyapunov exponents were computed for each time series to quantify the variability and local dynamic stability, respectively, of these movements. Quadratic regression analyses of the dependent measures vs. walking speed revealed highly significant U shaped trends for all three mean standard deviations, but highly significant linear trends, with significant or nearly significant quadratic terms, for five of the six finite-time Lyapunov exponents. Subjects exhibited consistently better local dynamic stability at slower speeds for these five measures. These results support the clinically based intuition that people who are at increased risk of falling walk slower to improve their stability, even at the cost of increased variability. 相似文献
6.
Unilateral load carriage is more hazardous to the musculoskeletal system than bilateral load. The purpose of this study was to examine the effect of such asymmetric carriage on postures and gait symmetry in ground reaction force (GRF) during walking. Kinematics and GRF of 19 adults were recorded while they walked under five load conditions: no load, dumbbell (10 and 20% body weight) held in right and left hand, respectively. After loading, the trunk bent towards the loaded or unloaded side in right- and left-hand trials and under different load weight conditions. The amplitude of trunk bend increased with load, accompanied by decreased stride width, progressively inclined legs towards unloaded side and higher level of asymmetry in medial/lateral GRF (GRFm/l) and free vertical moment GRF (GRFm). The findings indicate the postural adjustment is likely related to the characteristics of load and the task experience and handedness of subject and the unilateral load increases the gait asymmetry in GRFm/l and GRFm. 相似文献
7.
8.
The metabolic cost of walking is determined by many mechanical tasks, but the individual contribution of each task remains unclear. We hypothesized that the force generated to support body weight and the work performed to redirect and accelerate body mass each individually incur a significant metabolic cost during normal walking. To test our hypothesis, we measured changes in metabolic rate in response to combinations of simulated reduced gravity and added loading. We found that reducing body weight by simulating reduced gravity modestly decreased net metabolic rate. By calculating the metabolic cost per Newton of reduced body weight, we deduced that generating force to support body weight comprises approximately 28% of the metabolic cost of normal walking. Similar to previous loading studies, we found that adding both weight and mass increased net metabolic rate in more than direct proportion to load. However, when we added mass alone by using a combination of simulated reduced gravity and added load, net metabolic rate increased about one-half as much as when we added both weight and mass. By calculating the cost per kilogram of added mass, we deduced that the work performed on the center of mass comprises approximately 45% of the metabolic cost of normal walking. Our findings support the hypothesis that force and work each incur a significant metabolic cost. Specifically, the cost of performing work to redirect and accelerate the center of mass is almost twice as great as the cost of generating force to support body weight. 相似文献
9.
This study investigated the relationship of required coefficient of friction to gait speed, obstacle height, and turning strategy as participants walked around obstacles of various heights. Ten healthy, young adults performed 90° turns around corner pylons of four different heights at their self selected normal, slow, and fast walking speeds using both step and spin turning strategies. Kinetic data was captured using force plates. Results showed peak required coefficient of friction (RCOF) at push off increased with increased speed (slow μ=0.38, normal μ=0.45, and fast μ=0.54). Obstacle height had no effect on RCOF values. The average peak RCOF for fast turning exceeded the OSHA safety guideline for static COF of μ>0.50, suggesting further research is needed into the minimum static COF to prevent slips and falls, especially around corners. 相似文献
10.
Ranavolo A Don R Cacchio A Serrao M Paoloni M Mangone M Santilli V 《Journal of applied biomechanics》2008,24(3):271-279
Kinematic and kinetic methods (sacral marker, reconstructed pelvis, segmental analysis, and force platform methods) have been used to calculate the vertical excursion of the center of mass (COM) during movement. In this study we compared the measurement of vertical COM displacement yielded by different methods during able-bodied subjects' hopping at different frequencies (varying between 1.2 and 3.2 Hz). ANOVA revealed a significant interaction between hopping frequency and method (p < 0.001), showing that increasing hopping frequency reduced the differences between methods. A post hoc analysis revealed a significant difference between all methods at the lowest hopping frequency and between the force platform and both the sacral marker and reconstructed pelvis methods at the intermediate hopping frequencies, with differences ranging from 16 to 67 millimeters (all p < 0.05). Results are discussed in view of each methods' limits. We conclude that the segmental analysis and force platform methods can be considered to provide the most accurate results for COM vertical excursion during human hopping in a large range of hopping frequency. 相似文献
11.
Although the compliant bipedal model could reproduce qualitative ground reaction force (GRF) of human walking, the model with a fixed pivot showed overestimations in stance leg rotation and the ratio of horizontal to vertical GRF. The human walking data showed a continuous forward progression of the center of pressure (CoP) during the stance phase and the suspension of the CoP near the forefoot before the onset of step transition. To better describe human gait dynamics with a minimal expense of model complexity, we proposed a compliant bipedal model with the accelerated pivot which associated the CoP excursion with the oscillatory behavior of the center of mass (CoM) with the existing simulation parameter and leg stiffness. Owing to the pivot acceleration defined to emulate human CoP profile, the arrival of the CoP at the limit of the stance foot over the single stance duration initiated the step-to-step transition. The proposed model showed an improved match of walking data. As the forward motion of CoM during single stance was partly accounted by forward pivot translation, the previously overestimated rotation of the stance leg was reduced and the corresponding horizontal GRF became closer to human data. The walking solutions of the model ranged over higher speed ranges (~1.7 m/s) than those of the fixed pivoted compliant bipedal model (~1.5 m/s) and exhibited other gait parameters, such as touchdown angle, step length and step frequency, comparable to the experimental observations. The good matches between the model and experimental GRF data imply that the continuous pivot acceleration associated with CoM oscillatory behavior could serve as a useful framework of bipedal model. 相似文献
12.
To enhance the wearability of portable motion-monitoring devices, the size and number of sensors are minimized, but at the expense of quality and quantity of data collected. For example, owing to the size and weight of low-frequency force transducers, most currently available wearable gait measurement systems provide only limited, if any, elements of ground reaction force (GRF) data. To obtain the most GRF information possible with a minimal use of sensors, we propose a GRF estimation method based on biomechanical knowledge of human walking. This includes the dynamics of the center of mass (CoM) during steady human gait resembling the oscillatory behaviors of a mass-spring system. Available measurement data were incorporated into a spring-loaded inverted pendulum with translating pivot. The spring stiffness and simulation parameters were tuned to match, as accurately as possible, the available data and oscillatory characteristics of walking. Our results showed that the model simulation estimated reasonably well the unmeasured GRF. Using the vertical GRF and CoP profile for gait speeds ranging from 0.93 to 1.89 m/s, the anterior-posterior (A-P) GRF was estimated and resulted in an average correlation coefficient of R = 0.982 ± 0.009. Even when the ground contact timing and gait speed information were alone available, our method estimated GRFs resulting in R = 0.969 ± 0.022 for the A-P and R = 0.891 ± 0.101 for the vertical GRFs. This research demonstrates that the biomechanical knowledge of human walking, such as inherited oscillatory characteristics of the CoM, can be used to gain unmeasured information regarding human gait dynamics. 相似文献
13.
Three-dimensional (3D) path of the body centre of mass (CM) over an entire stride was computed from ground reaction forces during walking at constant average speed on a treadmill mounted on 3D force sensors. Data were obtained from 18 healthy adults at speeds ranging from 0.30 to 1.40 m s?1, in 0.1 m s?1 increments. Six subsequent strides were analyzed for each subject and speed (total strides=1296). The test session lasted about 30 min (10 min for walking). The CM path had an upward concave figure-of-eight shape that was highly consistent within and across subjects. Vertical displacement of the CM increased monotonically as a function of walking speed. The forward and particularly lateral displacements of the CM showed a U-shaped relationship to speed. The same held for the total 3D displacement (25.6–16.0 cm, depending on the speed). The results provide normative benchmarks and suggest hypotheses for further physiologic and clinical research. The familiar inverted pendulum model might be expanded to gyroscopic, “spin-and-turn” models. Abnormalities of the 3D path might flag motor impairments and recovery. 相似文献
14.
The apparent mass of the seated human body: vertical vibration 总被引:4,自引:1,他引:3
Apparent mass frequency response functions of the seated human body have been measured with random vibration in the vertical direction at frequencies up to 20 Hz. A group of eight subjects was used to investigate some factors (footrest, backrest, posture, muscle tension, vibration magnitude) that may affect the apparent mass of a person; a group of 60 subjects (24 men, 24 women and 12 children) was used to investigate variability between people. Relative movement between the feet and the seat was found to affect the apparent mass at frequencies below resonance, particularly near zero-frequency. The resonance frequency generally increased with the use of a back rest, an erect posture and, in particular, increased muscle tension; but there was considerable intersubject variability in the changes. The magnitude of the vibration had a consistent effect: the resonance frequency decreased from about 6 to 4 Hz when the magnitude of the vibration was increased from 0.25 to 2.0 ms-2 r.m.s. The apparent masses of all the subjects were remarkably similar when normalized with respect to sitting weight. However, there were statistically significant correlations between apparent mass and some body characteristics (such as weight and age). 相似文献
15.
We examined the effects of a load's mass and position on body sway during standing with a load on the back. Three healthy male subjects participated in this experiment. The subjects supported loads of 23kg, 33kg, and 43kg on their backs using a carrier frame. They were asked to stand for 75s on a force platform with their eyes open while being as quiet as possible. Time series data of center-of-pressure (COP) were collected at a sampling rate of 50Hz during the last 60s of the 75s standing period. The COP was measured under three conditions in terms of the load position on the frame: lower (close to the hip), middle, and upper (close to the shoulder). All subjects showed that the lower the position of the load, the more anteriorly the mean COP coordinate was located in the anteroposterior (AP) direction, and the smaller the total distance of the COP trajectories became. Regarding carrying the heavier loads, each subject showed a specific tendency in the mean AP coordinate. The three subjects had different physical characteristics in terms of body height and experience at carrying heavy loads. These results suggest that the examintion of the COP in a static posture can help our understanding of individual information on the posture supporting loads and the general positioning of the body. 相似文献
16.
17.
Martelli S Taddei F Cappello A van Sint Jan S Leardini A Viceconti M 《Journal of biomechanics》2011,44(9):1716-1721
Skeletal forces are fundamental information in predicting the risk of bone fracture. The neuromotor control system can drive muscle forces with various task- and health-dependent strategies but current modelling techniques provide a single optimal solution of the muscle load sharing problem. The aim of the present work was to study the variability of the hip load magnitude due to sub-optimal neuromotor control strategies using a subject-specific musculoskeletal model. The model was generated from computed tomography (CT) and dissection data from a single cadaver. Gait kinematics, ground forces and electromyographic (EMG) signals were recorded on a body-matched volunteer. Model results were validated by comparing the traditional optimisation solution with the published hip load measurements and the recorded EMG signals. The solution space of the instantaneous equilibrium problem during the first hip load peak resulted in 10(5) dynamically equivalent configurations of the neuromotor control. The hip load magnitude was computed and expressed in multiples of the body weight (BW). Sensitivity of the hip load boundaries to the uncertainty on the muscle tetanic stress (TMS) was also addressed. The optimal neuromotor control induced a hip load magnitude of 3.3 BW. Sub-optimal neuromotor controls induced a hip load magnitude up to 8.93 BW. Reducing TMS from the maximum to the minimum the lower boundary of the hip load magnitude varied moderately whereas the upper boundary varied considerably from 4.26 to 8.93 BW. Further studies are necessary to assess how far the neuromotor control can degrade from the optimal activation pattern and to understand which sub-optimal controls are clinically plausible. However we can consider the possibility that sub-optimal activations of the muscular system play a role in spontaneous fractures not associated with falls. 相似文献
18.
Hajnis K Pavelková J 《Anthropologischer Anzeiger; Bericht über die biologisch-anthropologische Literatur》2008,66(3):327-336
This article is devoted to the age changes of the Body Mass Index in Czech and Slovak children from 1.5 to 15 years of age. The anthropological survey was carried out in 1976-1978 in the whole region of the former Czechoslovakia. At the beginning of the research period children with normal weight predominate. After the seventh year of age there is a change and the BMI is increasing. As late as pre-puberty and puberty there is a change in a fractional part of the population, as children with overweight are increasing, more frequently in girls than in boys. However, its presence is not fundamentally increasing up to 15 years. The frequency differences in the different BMI categories between both sexes in the Czech and Slovak populations are only rarely statistically significant. 相似文献
19.
20.
Ahituv N Kavaslar N Schackwitz W Ustaszewska A Martin J Hebert S Doelle H Ersoy B Kryukov G Schmidt S Yosef N Ruppin E Sharan R Vaisse C Sunyaev S Dent R Cohen J McPherson R Pennacchio LA 《American journal of human genetics》2007,80(4):779-791
Body weight is a quantitative trait with significant heritability in humans. To identify potential genetic contributors to this phenotype, we resequenced the coding exons and splice junctions of 58 genes in 379 obese and 378 lean individuals. Our 96-Mb survey included 21 genes associated with monogenic forms of obesity in humans or mice, as well as 37 genes that function in body weight-related pathways. We found that the monogenic obesity-associated gene group was enriched for rare nonsynonymous variants unique to the obese population compared with the lean population. In addition, computational analysis predicted a greater fraction of deleterious variants within the obese cohort. Together, these data suggest that multiple rare alleles contribute to obesity in the population and provide a medical sequencing-based approach to detect them. 相似文献