首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural basis for ubiquitin recognition by SH3 domains   总被引:1,自引:0,他引:1  
The SH3 domain is a protein-protein interaction module commonly found in intracellular signaling and adaptor proteins. The SH3 domains of multiple endocytic proteins have been recently implicated in binding ubiquitin, which serves as a signal for diverse cellular processes including gene regulation, endosomal sorting, and protein destruction. Here we describe the solution NMR structure of ubiquitin in complex with an SH3 domain belonging to the yeast endocytic protein Sla1. The ubiquitin binding surface of the Sla1 SH3 domain overlaps substantially with the canonical binding surface for proline-rich ligands. Like many other ubiquitin-binding motifs, the SH3 domain engages the Ile44 hydrophobic patch of ubiquitin. A phenylalanine residue located at the heart of the ubiquitin-binding surface of the SH3 domain serves as a key specificity determinant. The structure of the SH3-ubiquitin complex explains how a subset of SH3 domains has acquired this non-traditional function.  相似文献   

2.
CIN85 is an adaptor protein linking the ubiquitin ligase Cbl and clathrin-binding proteins in clathrin-mediated receptor endocytosis. The SH3 domains of CIN85 bind to a proline-rich region of Cbl. Here we show that all three SH3 domains of CIN85 bind to ubiquitin. We also present a data-based structural model of the CIN85 SH3-C domain in complex with ubiquitin. In this complex, ubiquitin binds to the canonical interaction surface of the SH3 domain for proline-rich ligands and mimics the PPII helix, and we provide evidence that ubiquitin competes with these ligands for binding. We demonstrate that disruption of ubiquitin binding results in constitutive ubiquitination of CIN85 and an increased level of ubiquitination of EGFR in the absence of EGF stimulation. These results suggest that competition between Cbl and ubiquitin binding to CIN85 regulates Cbl function and EGFR endocytosis.  相似文献   

3.
4.
Di Y  Li S  Wang L  Zhang Y  Dorf ME 《Cellular signalling》2008,20(4):705-713
  相似文献   

5.
The Src family protein tyrosine kinases participate in signalling through cell surface receptors that lack intrinsic tyrosine kinase domains. All nine members of this family possess adjacent Src homology (SH2 and SH3) domains, both of which are essential for repression of the enzymatic activity. The repression is mediated by binding between the SH2 domain and a C-terminal phosphotyrosine, and the SH3 domain is required for this interaction. However, the biochemical basis of functional SH2-SH3 interaction is unclear. Here, we demonstrate that when the SH2 and SH3 domains of p59fyn (Fyn) were present as adjacent domains in a single protein, binding of phosphotyrosyl peptides and proteins to the SH2 domain was enhanced, whereas binding of a subset of cellular polypeptide ligands to the SH3 domain was decreased. An interdomain communication was further revealed by occupancy with domain-specific peptide ligands: occupancy of the SH3 domain with a proline-rich peptide enhanced phosphotyrosine binding to the linked SH2 domain, and occupancy of the SH2 domain with phosphotyrosyl peptides enhanced binding of certain SH3-specific cellular polypeptides. Second, we demonstrate a direct binding between purified SH2 and SH3 domains of Fyn and Lck Src family kinases. Heterologous binding between SH2 and SH3 domains of closely related members of the Src family, namely, Fyn, Lck, and Src, was also observed. In contrast, Grb2, Crk, Abl, p85 phosphatidylinositol 3-kinase, and GTPase-activating protein SH2 domains showed lower or no binding to Fyn or Lck SH3 domains. SH2-SH3 binding did not require an intact phosphotyrosine binding pocket on the SH2 domain; however, perturbations of the SH2 domain induced by specific high-affinity phosphotyrosyl peptide binding abrogated binding of the SH3 domain. SH3-SH2 binding was observed in the presence of proline-rich peptides or when a point mutation (W119K) was introduced in the putative ligand-binding pouch of the Fyn SH3 domain, although these treatments completely abolished the binding to p85 phosphatidylinositol 3-kinase and other SH3-specific polypeptides. These biochemical SH2-SH3 interactions suggest novel mechanisms of regulating the enzymatic activity of Src kinases and their interactions with other proteins.  相似文献   

6.
Signalling through SH2 and SH3 domains   总被引:46,自引:0,他引:46  
In 1986, Pawson's group recognized a region of homology between two oncogenic tyrosine kinases that lay outside the catalytic domain. They termed this the Src homology 2, or SH2, domain. In the ensuing years, SH2 domains have been found in an impressive variety of proteins, as has a second region of homology, inevitably termed SH3. These domains appear to mediate controlled protein-protein interactions. Many proteins that contain SH2 and SH3 domains are involved in signal transduction, suggesting a new paradigm for regulation of intracellular signalling pathways.  相似文献   

7.
8.
9.
10.
Kay BK 《FEBS letters》2012,586(17):2606-2608
With the sequencing of an eukaryotic genome, it is possible to inventory the predicted proteome for proteins that carry one or more Src Homology 3 (SH3) domains. Due to the current ease of cloning and gene synthesis, these short domains can be readily overexpressed and manipulated for the purpose of characterizing their specificity and affinity for peptide ligands, as well as solving the three-dimensional structures of the domains. This information can be used to predict and confirm their cellular interacting partners, in the effort to understand the function of a eukaryotic protein by focusing on its SH3 domain. Finally, capitalizing on our mature understanding about protein-protein interacting modules, like the SH3 domain, it is possible to use directed evolution to enhance or change the specificity and affinity of an SH3 domain for the purpose of creating reagents to be used in biochemical purification or cell perturbation studies.  相似文献   

11.
Ubiquitin-associated (UBA) domains are found in a large number of proteins with diverse functions involved in ubiquitination, DNA repair, and signaling pathways. Recent studies have shown that several UBA domain proteins interact with ubiquitin (Ub), specifically p62, the phosphotyrosine-independent ligand of the SH2 domain of p56(lck); HHR23A, a human nucleotide excision repair protein; and DDI1, another damage-inducible protein. NMR chemical shift mapping reveals that Ub binds specifically but weakly to a conserved hydrophobic epitope on HHR23A UBA(1) and UBA(2) and that the UBA domains bind on the hydrophobic patch on the surface of the five-stranded beta-sheet of Ub. Models of the UBA(1)-Ub and UBA(2)-Ub complexes obtained from de novo docking reveal different orientations of the UBA domains on the Ub surface compared with those obtained by homology modeling with the related CUE domains, which also bind Ub. Our results suggest that UBA domains may interact with Ub as well as other proteins in more than one way while utilizing the same binding surface.  相似文献   

12.
Recent reports have demonstrated that interactions between the microtubule-associated protein tau and the nonreceptor tyrosine kinase Fyn play a critical role in mediating synaptic toxicity and neuronal loss in response to β-amyloid (Aβ) in models of Alzheimer's disease. Disruption of interactions between Fyn and tau may thus have the potential to protect neurons from Aβ-induced neurotoxicity. Here, we investigated tau and Fyn interactions and the potential implications for positioning of these proteins in membrane microdomains. Tau is known to bind to Fyn via its Src-homology (SH)3 domain, an association regulated by phosphorylation of PXXP motifs in tau. Here, we show that Pro216 within the PXXP(213-216) motif in tau plays an important role in mediating the interaction of tau with Fyn-SH3. We also show that tau interacts with the SH2 domain of Fyn, and that this association, unlike that of Fyn-SH3, is influenced by Fyn-mediated tyrosine phosphorylation of tau. In particular, phosphorylation of tau at Tyr18, a reported target of Fyn, is important for mediating Fyn-SH2-tau interactions. Finally, we show that tyrosine phosphorylation influences the localization of tau to detergent-resistant membrane microdomains in primary cortical neurons, and that this trafficking is Fyn-dependent. These findings may have implications for the development of novel therapeutic strategies aimed at disrupting the tau/Fyn-mediated synaptic dysfunction that occurs in response to elevated Aβ levels in neurodegenerative disease.  相似文献   

13.
Itzhaki Z  Margalit H 《PloS one》2012,7(4):e34503
Genome sequencing of various individuals or isolates of the same species allows studying the polymorphism level of specific proteins and protein domains. Here we ask whether domains that are known to be involved in mediating protein-protein interactions show lower polymorphism than other domains. To this end we take advantage of a recent genome sequence dataset of 39 Saccahromyces cerevisiae strains and the experimentally determined protein interaction network of the laboratory strain. We analyze the polymorphism in domain residues involved in interactions at various levels of resolution, depending on their likelihood to be interaction mediators. We find that domains involved in interactions are less polymorphic than other domains. Furthermore, as the likelihood of a residue to be involved in interaction increases, its polymorphism decreases. Our results suggest that purifying selection operates on domains capable of mediating protein interactions to maintain their function.  相似文献   

14.
Vav is a guanine nucleotide exchange factor for the Rho/Rac family that is expressed exclusively in hematopoietic cells. Growth factor receptor-bound protein 2 (Grb2) has been proposed to play important roles in the membrane localization and activation of Vav through dimerization of its C-terminal Src-homology 3 (SH3) domain (GrbS) and the N-terminal SH3 domain of Vav (VavS). The crystal structure of VavS complexed with GrbS has been solved. VavS is distinct from other SH3 domain proteins in that its binding site for proline-rich peptides is blocked by its own RT loop. One of the ends of the VavS beta-barrel forms a concave hydrophobic surface. The GrbS components make a contiguous complementary interface with the VavS surface. The binding site of GrbS for VavS partially overlaps with the canonical binding site for proline-rich peptides, but is definitely different. Mutations at the interface caused a decrease in the binding affinity of VavS for GrbS by 4- to 40-fold. The structure reveals how GrbS discriminates VavS specifically from other signaling molecules without binding to the proline-rich motif.  相似文献   

15.
Tim9 and Tim10 belong to the small Tim family of mitochondrial ATP-independent chaperones. They are organised in a specific hetero-oligomeric complex (TIM10) that escorts polytopic proteins into the mitochondrial inner membrane. The contributions of the individual subunits to the assembly and function of the TIM10 complex remain poorly understood. Here, we show that substrate recognition and assembly of the complex are mediated by distinct domains of the subunits. These are unrelated to the characteristic "twin CX3C" motif that is present in all small Tims and ensures proper folding of the unassembled subunits. Specifically, we show that substrate recognition is achieved by the Tim10 subunit, whilst Tim9 serves a more structural role. The N-terminal domain of Tim10 is a substrate sensor whilst its C-terminal part is essential for complex formation. By contrast, both N and C-terminal domains of Tim9 are involved in the stability of the complex.  相似文献   

16.
SH2 and SH3 domains: from structure to function.   总被引:133,自引:0,他引:133  
T Pawson  G D Gish 《Cell》1992,71(3):359-362
  相似文献   

17.
The effect of C-terminal tyrosine phosphorylation on molecular motions in the Src kinases Hck and c-Src is investigated by molecular dynamics simulations. The SH2 and SH3 domains of the inactive kinases are seen to be tightly coupled by the connector between them, impeding activation. Dephosphorylation of the tail reduces the coupling between the SH2 and SH3 domains in the simulations, as does replacement of connector residues with glycine. A mutational analysis of c-Src expressed in Schizosaccharomyces pombe demonstrates that replacement of residues in the SH2-SH3 connector with glycine activates c-Src. The SH2-SH3 connector appears to be an inducible "snap lock" that clamps the SH2 and SH3 domains upon tail phosphorylation, but which allows flexibility when the tail is released.  相似文献   

18.
Mitogen‐activated protein kinase (MAPK) signaling plays important roles in diverse biological processes. In Arabidopsis, MPK3/MPK6, MKK4/MKK5, and the MAPKKK YODA (YDA) form a MAPK pathway that negatively regulates stomatal development. Brassinosteroid (BR) stimulates this pathway to inhibit stomata production. In addition, MPK3/MPK6 and MKK4/MKK5 also serve as critical signaling components in plant immunity. Here, we report that MAPKKK3/MAPKKK5 form a kinase cascade with MKK4/MKK5 and MPK3/MPK6 to transduce defense signals downstream of multiple plant receptor kinases. Loss of MAPKKK3/MAPKKK5 leads to reduced activation of MPK3/MPK6 in response to different pathogen‐associated molecular patterns (PAMPs) and increased susceptibility to pathogens. Surprisingly, developmental defects caused by silencing of YDA are suppressed in the mapkkk3 mapkkk5 double mutant. On the other hand, loss of YDA or blocking BR signaling leads to increased PAMP‐induced activation of MPK3/MPK6. These results reveal antagonistic interactions between a developmental MAPK pathway and an immune signaling MAPK pathway.  相似文献   

19.
20.
Previous studies demonstrated that intra-domain interactions between Src family kinases (SFKs), stabilized by binding of the phosphorylated C-terminus to the SH2 domain and/or binding of the SH2 kinase linker to the SH3 domain, lock the molecules in a closed conformation, disrupt the kinase active site, and inactivate SFKs. Here we report that the up-regulation of N-methyl-D-aspartate receptors (NMDARs) induced by expression of constitutively active neuronal Src (n-Src), in which the C-terminus tyrosine is mutated to phenylalanine (n-Src/Y535F), is significantly reduced by dysfunctions of the SH2 and/or SH3 domains of the protein. Furthermore, we found that dysfunctions of SH2 and/or SH3 domains reduce auto-phosphorylation of the kinase activation loop, depress kinase activity, and decrease NMDAR phosphorylation. The SH2 domain plays a greater regulatory role than the SH3 domain. Our data also show that n-Src binds directly to the C-terminus of the NMDAR NR2A subunit in vitro, with a K(D) of 108.2 ± 13.3 nM. This binding is not Src kinase activity-dependent, and dysfunctions of the SH2 and/or SH3 domains do not significantly affect the binding. These data indicate that the SH2 and SH3 domains may function to promote the catalytic activity of active n-Src, which is important in the regulation of NMDAR functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号