首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of microarrays in the analysis of gene expression is becoming widespread for many organisms, including yeast. However, although the genomes of a number of filamentous fungi have been fully or partially sequenced, microarray analysis is still in its infancy in these organisms. Here, we describe the construction and validation of microarrays for the fungus Aspergillus nidulans using PCR products from a 4092 EST conidial germination library. An experiment was designed to validate these arrays by monitoring the expression profiles of known genes following the addition of 1% (w/v) glucose to wild-type A. nidulans cultures grown to mid-exponential phase in Vogel's minimal medium with ethanol as the sole carbon source. The profiles of genes showing statistically significant differential expression following the glucose up-shift are presented and an assessment of the quality and reproducibility of the A. nidulans arrays discussed.  相似文献   

2.
3.
4.
Summary .  Time course microarray data consist of mRNA expression from a common set of genes collected at different time points. Such data are thought to reflect underlying biological processes developing over time. In this article, we propose a model that allows us to examine differential expression and gene network relationships using time course microarray data. We model each gene-expression profile as a random functional transformation of the scale, amplitude, and phase of a common curve. Inferences about the gene-specific amplitude parameters allow us to examine differential gene expression. Inferences about measures of functional similarity based on estimated time-transformation functions allow us to examine gene networks while accounting for features of the gene-expression profiles. We discuss applications to simulated data as well as to microarray data on prostate cancer progression.  相似文献   

5.
6.
7.
8.
Bipolaris oryzae is a filamentous ascomycetous fungus that causes brown leaf spot disease in rice. We isolated and characterized BLR1, a gene that encodes a putative blue-light regulator similar to Neurospora crassa white-collar 1 (WC-1). The deduced amino acid sequence of BLR1 showed high degrees of similarity to other fungal blue-light regulator protein. Disruption of the BLR1 gene demonstrated that this gene is essential for conidial development after conidiophore formation and for near-UV radiation-enhanced photolyase gene expression.  相似文献   

9.
10.
11.
12.
The phytopathogen Pseudomonas syringae competes with other epiphytic organisms, such as filamentous fungi, for resources. Here we characterize a gene in P. syringae pv. syringae B728a and P. syringae pv. tomato DC3000, termed phcA , that has homology to a filamentous fungal gene called het-c . phcA is conserved in many P. syringae strains, but is absent in one of the major clades, which includes the P. syringae pathovar phaseolicola. In the filamentous fungus Neurospora crassa , HET-C regulates a conserved programmed cell death pathway called heterokaryon incompatibility (HI). Ectopic expression of phcA in N. crassa induced HI and cell death that was dependent on the presence of a functional het-c pin-c haplotype. Further, by co-immunoprecipitation experiments, a heterocomplex between N. crassa HET-C1 and PhcA was associated with phcA- induced HI . P. syringae was able to attach and extensively colonize N. crassa hyphae, while an Escherichia coli control showed no association with the fungus. We further show that the P. syringae is able to use N. crassa as a sole nutrient source. Our results suggest that P. syringae has the potential to utilize phcA to acquire nutrients from fungi in nutrient-limited environments like the phyllosphere by the novel mechanism of HI induction.  相似文献   

13.
Kikuma T  Arioka M  Kitamoto K 《Autophagy》2007,3(2):128-129
Filamentous fungi form aerial hyphae on solid medium, and some of these differentiate into conidiophores for asexual sporulation (conidiation). In the filamentous deuteromycete, Aspergillus oryzae, aerial hyphae are formed from the foot cells and some differentiate into conidiophores, which are composed of vesicles, phialides and conidia. Recently, we isolated the yeast ATG8 gene homologue Aoatg8 from A. oryzae, and visualized autophagy by the expression of an EGFP (enhanced green fluorescent protein)-AoAtg8 fusion protein and DsRed2 protein in this fungus. Furthermore, by constructing the Aoatg8 deletion and conditional mutants, we demonstrated that autophagy functions during the process of differentiation of aerial hyphae, conidiation and conidial germination in A. oryzae. Here, we discuss the contribution of autophagy towards the differentiation and germination processes in filamentous fungi.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号