首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beta-carboxylation during photosynthesis in Atriplex   总被引:2,自引:0,他引:2  
  相似文献   

2.
Improvements in plant productivity (biomass) and yield have centered on increasing the efficiency of leaf CO2 fixation and utilization of products by non-photosynthetic sink organs. We had previously demonstrated a correlation between photosynthetic capacity, plant growth, and the extent of leaf starch synthesis utilizing starch-deficient mutants. This finding suggested that leaf starch is used as a transient photosynthetic sink to recycle inorganic phosphate and, in turn, maximize photosynthesis. To test this hypothesis, Arabidopsis thaliana and rice (Oryza sativa L.) lines were generated with enhanced capacity to make leaf starch with minimal impact on carbon partitioning to sucrose. The Arabidopsis engineered plants exhibited enhanced photosynthetic capacity; this translated into increased growth and biomass. These enhanced phenotypes were displayed by similarly engineered rice lines. Manipulation of leaf starch is a viable alternative strategy to increase photosynthesis and, in turn, the growth and yields of crop and bioenergy plants.  相似文献   

3.
4.
Application of glyphosate (N-[phosphonomethyl] glycine) to exporting leaves of sugar beet (Beta vulgaris, L.) during the day lowered stomatal conductance and carbon fixation. Allocation of newly fixed carbon to foliar starch accumulation was nearly completely inhibited, being decreased by the same amount as net carbon fixation. In contrast, decreasing net carbon fixation in untreated leaves by lowering CO2 concentration caused starch accumulation to decrease, but only in the same proportion as net carbon fixation. Shikimate level increased 50-fold in treated leaves but the elevated rate of carbon accumulation in shikimate was only 4% of the decrease in the rate of starch accumulation. Application of steady state labeling with 14CO2 to exporting leaves confirmed the above changes in carbon metabolism, but revealed no other major daytime differences in the 14C-content of amino acids or other compounds between treated and control leaves. Less 14C accumulated in treated leaves because of decreased fixation, not increased export. The proportion of newly fixed carbon allocated to sucrose increased, maintaining export at the level in control leaves. Returning net carbon exchange to the rate before treatment restored starch accumulation fully and prevented a decrease in export during the subsequent dark period.  相似文献   

5.
Combining measurements of electric potential and pH with such of chlorophyll fluorescence and leaf gas exchange showed heat stimulation to evoke an electrical signal (propagation speed: 3–5 mm s−1) that travelled through the leaf while reducing the net CO2 uptake rate and the photochemical quantum yield of both photosystems (PS). Two-dimensional imaging analysis of the chlorophyll fluorescence signal of PS II revealed that the yield reduction spread basipetally via the veins through the leaf at a speed of 1.6 ± 0.3 mm s−1 while the propagation speed in the intervein region was c. 50 times slower. Propagation of the signal through the veins was confirmed because PS I, which is present in the bundle sheath cells around the leaf vessels, was affected first. Hence, spreading of the signal along the veins represents a path with higher travelling speed than within the intervein region of the leaf lamina. Upon the electrical signal, cytoplasmic pH decreased transiently from 7.0 to 6.4, while apoplastic pH increased transiently from 4.5 to 5.2. Moreover, photochemical quantum yield of isolated chloroplasts was strongly affected by pH changes in the surrounding medium, indicating a putative direct influence of electrical signalling via changes of cytosolic pH on leaf photosynthesis.  相似文献   

6.
Photorespiration during C 4 photosynthesis   总被引:11,自引:0,他引:11  
  相似文献   

7.
8.
9.
The influence of cooling rate and quench temperature on the formation of spherulitic morphology in heated mung bean starch is reported. Spherulites were obtained for a wide range of cooling rates (2.5-250 degrees C/min), provided the system was heated to 180 degrees C and then cooled below 65 degrees C. Branched crystalline structures were also observed, as was a gellike morphology. The dissolution temperature for spherulitic material ranged between 100 and 130 degrees C. A second dissolution endotherm was observed between 130 and 150 degrees C in systems containing gellike material. Spherulites revealed B-type X-ray diffraction patterns. Spherulitic crystallization of starch following phase separation is proposed as a model for starch granule initiation in vivo.  相似文献   

10.
Irradiation of human erythrocyte membranes with 3H-labelled cytochalasin B results in specific photolabelling of the glucose transporter. The action spectrum of photolabelling has a maximum at approx. 280 nm, whereas the absorption spectrum of cytochalasin B is maximal at 210 nm. By irradiating with narrow-band-width light centered at 280 nm for 2 h, 8% of the transporters become covalently labelled and 47% of the remaining cytochalasin B-binding sites are obliterated. We conclude that photolabelling driven by narrow-bandwidth irradiation proceeds via photoactivation of an aromatic amino acid residue on the transporter molecule, and when compared to wide-bandwidth irradiation, permits more efficient incorporation of the label without causing additional photodamage to the remaining transporters.  相似文献   

11.
Sensors for the simultaneous determinations of sucrose and glucose, lactose and glucose, and starch and glucose were prepared by a combination of the enzyme system shown below and an oxygen electrode: The mechanism for separating the substrates with the proposed sensors is based on the time lag arising from reaction and diffusion. Invertase, beta-galactosidase, amyloglucosidase, mutarotase, and glucose oxidase were covalently immobilized on triacetyl cellulose membranes containing 1,8-diamino-4-aminomethyloctane. A glucose oxidase membrane, mutarotase membrane, three sheets of triacetyl cellulose membranes, and invertase, or beta-galactosidase or amyloglucosidase membrane were placed in that order on the tip of the oxygen electrode. Calibration curves for sucrose, lactose, and starch were linear up to 40 mM, 60-180 mM, and 10%, respectively. The simultaneous determination of sucrose and glucose, lactose and glucose, and starch and glucose was possible when the amount of glucose coexised was in the range of 2-16% sucrose, 2.8-8.3% lactose, or 0.1-1% starch. The relative errors were +/-4% for sucrose and +/-3% for lactose in 100 assays. The starch sensor was reused only five times. Each enzyme membrane was fairly stable for more than 10 days.  相似文献   

12.
Photosynthesis of C3 plants is occasionally inhibited upon switching from normal to low partial pressure of O2. Leaves of Solanum tuberosum exhibited this effect reproducibly under saturating light and 700 microbars of CO2. We determined the partitioning of recent photosynthate between starch and sucrose and measured the concentration of hexose monophosphates in the stroma and cytosol after nonaqueous fractionation. The reduction in the rate of photosynthesis upon switching to low partial pressure of O2 was caused by reduced starch synthesis. The concentration of hexose monophosphates in the stroma fell and the glucose 6-phosphate to fructose 6-phosphate to fructose 6-phosphate ratio fell from 2.7 to 1.3, indicating an inhibition of phosphoglucoisomerase as described by K-J Dietz ([1985] Biochim Biophys Acta 839: 240-248). The concentration of hexose monophosphates in the cytosol increased, ruling out a sucrose synthesis limitation by reduced transport from the chloroplast as the explanation for low O2 inhibition of photosynthesis.  相似文献   

13.
A L Etienne 《Biochimie》1986,68(3):471-479
Photosynthetic oxygen evolution results from the dehydrogenation of water molecules by the chlorophyll-center cation of photosystem II. The primary charge separation occurs between the chlorophyll center and the primary acceptor. The positive charges are then transferred to the manganese cluster able to accumulate four positive equivalents. Protons are liberated during this process. The oxygen evolution requires the presence of Ca2+ and Cl-. The oxidation of two water molecules, and the transfer of the electrons to the plastoquinone pool, are done by a supra-molecular complex which utilizes photons as substrate, and can therefore transfer electrons against a large redox potential difference.  相似文献   

14.
Shootlets of Rosa multiflora L. cv. Montse were cultured in vitro with four different levels of sucrose (0, 1, 3 and 5%). Chloroplasts of shootlets grown in a medium without sucrose contained numerous, large plastoglobuli and were lacking in starch granules. The size and number of starch granules increased with the level of sucrose in the culture medium. Starch content in leaves of shootlets grown with 5% sucrose was higher (ca 1, 3%) than those grown with 3% (ca 0, 45%) and 1% sucrose (ca 0, 27%). Starch might be used by the in vitro shootlets during the acclimation period.Abbreviations BA benzyladenine - Pi orthophosphate - S sucrose - Rubisco ribulose 1,5-bisphosphate carboxylase - TEM transmission electron microscopy  相似文献   

15.
The aim of this work was to determine in what form carbon destined for starch synthesis crosses the membranes of plastids in developing pea (Pisum sativum L.) embryos. Plastids were isolated mechanically and incubated in the presence of ATP with the following 14C-labelled substrates: glucose, fructose, glucose 6-phosphate, glucose 1-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, dihydroxyacetone phosphate. Glucose 6-phosphate was the only substrate that supported physiologically relevant rates of starch synthesis. Incorporation of label from glucose 6-phosphate into starch was dependent upon the integrity of the plastids and the presence of ATP. The rate of incorporation approached saturation at a glucose 6-phosphate concentration of less than 1 mM. It is argued that glucose 6-phosphate is likely to enter the plastid as the source of carbon for starch synthesis in vivo.Abbreviations ADPG PPase ADP-glucose pyrophosphorylase - DHAP dihydroxyacetone phosphate  相似文献   

16.
17.
18.
Summary Incubation temperature, inoculum size, initial pH and pH control play a major role in cassava starch to glucose conversion byRhizopus oligosporus. Maximal glucose production was obtained after 45 to 48 h fermentation at 45°C, pH control at 4.0, 5% cassava starch, agitation rate of 300 rev./min. and aeration rate of 85 ml/min. Under these conditions, starch hydrolysis was 99.4% with a starch-to-glucose conversion efficiency of 91.6% and a final yield of 35.2 g/l glucose with a biomass yield of only 2.8 g/100 g cassava starch.
Optimisation de la conversion de l'amidon de manioc en glucose par Rhizopus oligosporus
Résumé La température d'incubation, la taille de l'inoculum, le pH initial et le contrôle du pH jouent un rôle majeur dans la conversion de l'amidon de manioc en glucose parRhizopus oligosporus. On obtient la production maximum de glucose après 45–48 h de fermentation à 45°C, avec un contrôle de pH à 4.0, 5% d'amidon de manioc, une vitesse d'agitation de 300 tpm et une vitesse d'aération de 85 ml/min. Dans ces conditions, l'hydrolyse de l'amidon atteint 99.4% avec une efficacité de conversion de l'amidon en glucose de 91.6% et un rendement final de 35.2 g de glucose par litre pour un rendement en biomasse de 2.8 g seulement par 100 g d'amidon de manioc.
  相似文献   

19.
Partially purified glucoamylase from Aspergillus awamori NRRL 3112 was immobilized on diethylaminoethyl cellulose in the presence of low ionic-strength acetate buffers at pH 4.2. The active enzyme–cellulose complex was used to convert starch substrates continuously to glucose in stirred reactors. Substrate concentrations as high as 30% could be quantitatively converted to glucose at a rate of more than 25 mg/min/liter at 55°C for periods of 3 to 4 weeks in a 4-liter reactor. Shutdowns were due to mechanical problems and not to loss of enzymes, which could be recovered with no appreciable loss of specific activity. Transfer products, such as isomaltose and panose, were present in immobilized enzyme-produced syrups but to no greater degree than in soluble glucoamylase digests of starch.  相似文献   

20.
Weekly surface samples were collected in lower Narragansett Bay, Rhode Island, during the 1975 winter-spring bloom and fractionated by nets to nannoplankton (<20 μm) and total (< 158 μm) size fractions. Each size fraction was assayed for paniculate carbon, nitrogen, carbohydrate, protein, chlorophyll a, and cell counts. The <20 μm values were subtracted from the <158 μm values to estimate the composition of the 20 μm to 158 μm fraction (termed net plankton). As nutrients (primarily nitrogen) decreased to undetectable levels with the culmination of the diatom bloom, the ratios of protein/carbohydrate, carbohydrate/carbon, and carbon/chlorophyll a in the net plankton indicated the diatom population was increasingly nutrient-limited. Each size fraction was also incubated at a saturating light intensity with carbon-14; following filtration, the cells were extracted with solvents to obtain labelled polysaccharide and protein. The daily rates of polysaccharide and protein synthesis in the net plankton declined as the bloom entered the stationary phase. When the diatom population was at its maximum density the majority of the carbon-14 was found in the ethanol-soluble fraction; this may be due to high light intensities or nutrient effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号