首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The strains BALB/cHeA (BALB/c) and STS/A (STS) differ in production of IL-4 and IL-10, two Th2 cytokines, after stimulation of spleen cells with Concanavalin A, STS being a low and BALB/c a high producer. We analyzed the genetic basis of this strain difference using the recombinant congenic (RC) strains of the BALB/c-c-STS/Dem (CcS/Dem) series. This series comprises 20 homozygous strains. Each CcS/Dem strain contains a different, random set of approximately 12.5% genes of the "donor" strain STS and approximately 87.5% of the "background" strain BALB/c. We selected for further analysis the RC strain production intermediate between BALB/c and STS. In (CcS-20×BALB/c)F2 hybrids we found that different loci control expression of IL-4 and IL-10. Cypr1 (cytokine production 1) on chromosome 16 near D16Mit15 controls IL-4 production, whereas the production of IL-10 is influenced by loci Cypr2 near D1Mit14 and D1Mit227 on chromosome 1 and Cypr3 marked by D5Mit20 on chromosome 5. In addition, the relationship between the level of these two cytokines depends on the genotype of the F2 hybrids at a locus cora1 (correlation 1) on chromosome 5. This differential genetic regulation may be relevant for the understanding of biological effects of T-helper cells in mice of different genotypes. Received: 2 March 1998 / Revised: 8 June 1998  相似文献   

2.
Apoptosis, a mechanism for removal of genetically damaged cells and for maintenance of desired size of cell populations, has been implicated in tumor development. Previously, we defined polymorphic loci for susceptibility to apoptosis of thymocytes Rapop1, Rapop2, and Rapop3 on mouse Chromosomes 16, 9, and 3, respectively, using recombinant congenic CcS/Dem strains, each of which contains a random set of 12.5% STS/A genome in the genetic background of BALB/cHeA. The STS/A alleles at these loci confer lower susceptibility to radiation-induced apoptosis of thymocytes than the BALB/cHeA. In the present study, we tested susceptibility of colon crypt cells to radiation-induced apoptosis. In contrast to apoptosis in thymus, the STS/A mice were more susceptible to apoptosis in colon than the BALB/cHeA. Among the CcS/Dem strains, CcS-4, CcS-7, and CcS-16 were more susceptible to apoptosis in colon than the BALB/cHeA; in thymus, the CcS-7 mice are less susceptible, and the CcS-4 and CcS-16 are not different from the BALB/cHeA. Thus, individual CcS/Dem strains showed different apoptosis susceptibility in the two organs. Analysis of (CcS-7 × BALB/cHeA)F2 hybrids revealed linkage of susceptibility to radiation-induced apoptosis of colon crypt cells to two loci on Chrs 9 and 16, to which Rapop2 and Rapop1 are mapped. The STS/A allele at the locus on chromosome 9 results in high susceptibility to apoptosis of colon crypt cells in mice homozygous for the BALB/cHeA allele at the locus on Chr 16. Although these two loci may be identical to Rapop1 and Rapop2, they affect apoptosis in colon in a way different from that in thymus. Received: 9 October 1997 / Accepted: 29 December 1997  相似文献   

3.
Genetic dissection of susceptibility to radiation-induced apoptosis of thymocytes was performed by counting dead cells in histologically processed thymuses after 0.5 Gy of whole-body X-irradiation, using recombinant congenic (CcS/Dem) strains derived from inbred mouse strains BALB/cHeA (susceptible) and STS/A (resistant). A high (8/20) number of strains with lower dead cell scores than BALB/cHeA among CcS/ Dem recombinant congenic strains (RCS), which contain 12.5% of STS/A genome in the genetic background of BALB/cHeA strain, indicates that the difference between BALB/cHeA and STS/A is caused by several genes and that susceptibility probably requires BALB/ cHeA alleles at more than one locus. Similar results were obtained with CXS/Hg recombinant inbred (CXS/ Hg) strains. Analysis of F2 hybrids between BALB/ cHeA and CcS-7, one of the CcS/Dem strains that showed lower dead cell scores than BALB/cHeA, demonstrated that a novel gene (Rapop1, radiation-induced apoptosis 1) controlling susceptibility to radiation-induced apoptosis in the thymus is located in the proximal region of mouse chromosome 16.  相似文献   

4.
Lymphocytes of mouse strains BALB/cHeA (BALB/c) and STS/A (STS) differ in their response to CD3 antibody (anti-CD3). We analyzed the genetic basis of this strain difference, using the Recombinant Congenic Strains (RCS) of the BALB/c-c-STS/Dem (CcS/Dem) series. Each of the 20 CcS/Dem strains carries a different, random combination of 12.5% genes from the nonresponding strain STS and 87.5% genes of the intermediate responder strain BALB/c. Differences in the magnitude of anti-CD3-induced response among CcS/Dem strains indicated that in addition to Fcγ receptor 2 (Fcgr2) other genes are involved in the control of this response as well, and we have already mapped loci Tria1 (T cell receptor-induced activation 1), Tria2, and Tria3. In order to map additional Tria genes, we tested F2 hybrids between the high responder RC strain CcS-9 and the low responder strain CcS-11. Proliferation in complete RPMI medium without anti-CD3 is controlled by locus Sprol1 (spontaneous proliferation 1) linked to the marker D4Mit23 on Chr 4. At concentration 0.375 μg/ml anti-CD3 mAb, the response was controlled by a locus Tria4, which maps to the marker D7Mit32 on Chr 7. The response to the higher concentration of mAb, 3 μg/ml, was controlled by Tria5, which mapped to the marker D9Mit15 on Chr 9. Anti-CD3 is being used for modulation of lymphocyte functions in transplantation reactions and in cancer treatment. Study of mechanisms of action of different Tria loci could lead to better understanding of genetic regulation of these reactions. Received: 28 October 1998 / Accepted: 17 March 1999  相似文献   

5.
The strain distribution pattern of susceptibility to thymocyte apoptosis induced by ionizing radiation in 20 CcS/Dem recombinant congenic (RC) strains derived from the strains BALB/cHeA (susceptible) and STS/A (resistant) indicates that this trait is controlled by several genes. Recently, we mapped a novel apoptosis susceptibility gene Rapop1 (radiation-induced apoptosis 1) to chromosome 16 (N. Mori et al., 1995, Genomics 25: 604-614). In the present study, the analysis of F2 crosses between the resistant RC strain CcS-8 and the susceptible strain BALB/cHeA or the highly susceptible RC strain CcS-10 demonstrated two additional apoptosis susceptibility genes, Rapop2 and Rapop3, located in the proximal region of chromosome 9 and the telomeric region of chromosome 3, respectively. The possible candidate genes for these loci are discussed.  相似文献   

6.
Inherited predisposition to lung cancer is a phenotypic trait shared by different mouse inbred strains that show either a high or an intermediate predisposition. Other strains are instead genetically resistant. The Pas1 locus is the major determinant of lung cancer predisposition in the A/J strain (Gariboldi et al. 1993). To define the determinants of susceptibility to lung tumorigenesis in the highly susceptible SWR/J and in the intermediately susceptible BALB/c mice, we analyzed (BALB/c × SWR/J)F2 and (BALB/c × C3H/He)F2 crosses by genetic linkage experiments. The present results provide unequivocal evidence that the same Pas1/+ allele that leads to lung cancer predisposition is shared by A/J, SWR/J, and BALB/c strains. The intermediate susceptibility of the BALB/c strain would result by interaction of Pas1 locus with lung cancer resistance loci. Received: 18 April 1997 / Accepted: 15 June 1997  相似文献   

7.
A substrain of mice originating from the CF#1 strain (an outbred colony) reared at Osaka Prefecture University (CF#1/lr mice) develops cataracts beginning at 4 weeks of age. Affected mice were fully viable and fertile and developed cataracts by 14 weeks of age. Histologically, CF#1/lr mice showed vacuolation of the lens cortex, swollen lens fibers, lens rupture and nuclear extrusion. To elucidate the mode of inheritance, we analyzed heterozygous mutant hybrids generated from CF#1/lr mice and wild-type BALB/c mice. None of the heterozygous mutants were affected, and the ratio of affected to unaffected mice was 1:3 among the offspring of the heterozygous mutants. For the initial genome-wide screening and further mapping, we used affected progeny of CF#1/lr × (CF#1/lr × BALB/c) mice. We concluded that the cataracts in CF#1/lr mice are inherited through an autosomal recessive mutation and that the mutant gene is located on mouse chromosome 3 between D3Mit79 and D3Mit216. In this region, we identified 8 genes associated with ocular disease. All 8 genes were sequenced and a novel point mutation (1 bp insertion of cytosine) in exon 7 of the Bcar3 gene was identified. This mutation produced a premature stop codon and a truncated protein. In conclusion, we have identified the first spontaneous mutation in the Bcar3 gene associated with lens extrusion cataracts. This novel cataract model may provide further knowledge of the molecular biology of cataractogenesis and the function of the BCAR3 protein.  相似文献   

8.
By use of chlorambucil, we have generated a mouse mutation called scraggly (sgl) that exhibits skin and hair defects. Homozygous mutant mice exhibit hair loss, skin defects, and abnormalities in sebaceous lipid composition. We have constructed a high-resolution genetic map of mouse Chromosome (Chr) 19 that links this mutation to the anonymous DNA marker D19Umi1. An additional cross, (BALB/c × CAST/Ei) F1× BALB/c, was used to map markers around this mutation as well as to map the potential candidate genes, Fgf8 and Cyp17. Allelism tests between sgl and asebia (ab), another hair loss mutation on mouse Chr 19, showed that these genes were separate and distinct. Received: 8 December 1998 / Accepted: 10 May 1999  相似文献   

9.
T lymphocytes of the strain BALB/cHeA exhibit a low proliferative response to IL-2 and a high response to the anti-CD3 monoclonal antibodies, while the strain STS/A lymphocyte response to these stimuli is the opposite. We analyzed the genetic basis of this strain difference, using a novel genetic tool: the recombinant congenic strains (RCS). Twenty BALB/c-c-STS/Dem (CcS/Dem) RCS were used, each containing a different random set of approximately 12.5% of the genes from STS and the remainder from BALB/c. Consequently, the genes participating in the multigenic control of a phenotypic difference between BALB/c and STS become separated into different CcS strains where they can be studied individually. The strain distribution patterns of the proliferative responses to IL-2 and anti-CD3 in the CcS strains are different, showing that different genes are involved. The large differences between individual CcS strains in response to IL-2 or anti-CD3 indicate that both reactions are controlled by a limited number of genes with a relatively large effect. The high proliferative response to IL-2 is a dominant characteristic. It is not caused by a larger major cell subset size, nor by a higher level of IL-2R expression. The response to anti-CD3 is known to be controlled by polymorphism in Fc receptor 2 (Fcgr2) and the CcS strains carrying the low responder Fcgr2 allele indeed responded weakly. However, as these strains do respond to immobilized anti-CD3, while the STS strain does not, and as some CcS strains with the BALB/c allele of Fcgr2 are also low responders, additional gene(s) of the STS strain strongly depress the anti-CD3 response. In a backcross between the high responder and the low responder strains CcS-9 and CcS-11, one of these unknown genes was mapped to the chromosome 10 near D10Mit14. The CcS mouse strains which carry the STS alleles of genes controlling the proliferative response to IL-2 and anti-CD3 allow the future mapping, cloning, and functional analysis of these genes and the study of their biological effects in vivo.  相似文献   

10.
Immunogenicity of allogeneic immunoglobulins in mice were studied, measuring the allotype-specific antibody activity by agglutination of allogeneic antibody-coated red blood cells. It was found that the serum from C.B-20 mice (Igh b , BALB/c-congenic) was uniquely immunogenic in BALB/c mice for allotype antibody response. Whereas the C57BL/6 (Igh b ) serum was immunogenic only when heat aggregated and/or combined with adjuvant, the ultracentrifugation-deaggregated C.B-20 serum was definitely immunogenic when administered in a moderate dose (100 μl/mouse). Even more surprising was the fast that very low doses (0.01–0.1 μl) of soluble C.B-20 serum, but not C57BL/6 serum, down regulated the allotype-specific response effectively. Genetic analysis on congenic mice suggested that the immunogenicity is controlled by donorIgh orIgh-V(Id-C.B) inasmuch as the serum from BALB/c-congenic C.B-20 (Igh-V b C b ), but not BALB/c-congenic BAB/14 (Igh-V a C b ), mice was active in BALB/c mice in soluble form. Further studies showed that the Id-C.B was dominantly expressed on the immunoglobulins of (BALB/c×C.B-20)F1 and (C56BL/6×C.B-20)F1 strains, and was originally derived from the C57BL/Ka strain. The major determinant for the antibody production was encoded inIgh-C, but not inIgh-V. It is suggested thatId-C.B controls the allotype-specific antibody response in an unusual manner, possibly acting as a unique determinant activating helper T cells.  相似文献   

11.
When EcoRI digests of mouse genomic DNA were subjected to Southern blot analysis with the polymorphic repetitive sequence PR1 as a probe, one satellite-like band of 3.5 × 103 base-pairs, designated as PR1 family B, was detected in BALB/c-strain mice, but not in the DDD/1- or MOA-strain mice. Analysis of recombinant phage clones revealed that the repeating unit of the PR1 family B was 13.5 × 103 base-pairs long. This family consisted of a tandem array of repeating units and occupied as much as 2% of one BALB/c chromosome. Since the BALB/c-specific PR1 family B is not present in DDD/1 or MOA mice, the unpaired portion of the BALB/c chromosome may be looped out in a synaptonemal complex during meiosis in F1 hybrids of the BALB/c strain with DDD/1 or MOA. To determine the fate of this extra DNA, we examined the genotypes of the F1 hybrid mice and of the segregating populations. Although the PR1 patterns of F1 and most N2 mice are consistent with typical Mendelian inheritance, some N2 progeny showed an abnormal 3.5 × 103 base-pair band of unexpectedly reduced intensity. This indicated that the extra DNA of PR1 family B occasionally underwent recombination during meiosis in F1 mice, resulting in its apparent excision. Examination of PstI digests supported this interpretation.  相似文献   

12.
Submucosal glands (SMG) are important secretory glands that are present in the major airways and bronchioles of humans. In mice the structure, cellular composition, and density of SMG are similar to those seen in humans, but the glands are present only in the trachea. Characterization of SMG is important as they secrete bacteriocidal products such as lactoferrin, lysozyme, and defensins believed to be of importance in the innate defense system. Serous cells in SMG are the primary site of cystic fibrosis transmembrane conductance regulator (CFTR) gene expression and the initial site of histological abnormality in cystic fibrosis (CF) individuals. In this study, we examined four inbred strains of mice (A/J, C57BL/6N, FVB/N, and BALB/CAnN) and revealed that the extent to which glands descend in the mouse trachea varied between inbred strains. In particular, the A/J and C57BL/6N strains exhibited few SMG extending further than the first or second intercartilaginous space (mean depth of 0.4 ± 0.11 and 1.5 ± 0.32 tracheal rings respectively) in the trachea, whereas the FVB/N and BALB/CAnN strains had SMG extending beyond the fourth space (mean depths of 3.3 ± 0.46 and 5.6 ± 0.45 rings respectively). We have previously shown that in congenic C57Bl/6N Cftr mutant mice (CF mice), the SMG are distributed more distally than in wild-type C57Bl/6N but are indistinguishable from BALB/CAnN wild-type or CF mice. The implication that SMG distribution is influenced by Cftr gene expression (or a gene closely linked to Cftr) led us to investigate the genetic difference between C57Bl6/N and BALB/CAnN mice. In recombinant inbred strain (RIS) analysis (with BALB/CJ and C57BL/6J progenitors), two loci were identified as being linked to the SMG phenotype (peak likelihood statistic levels of 8.8 and 9.9 on Chrs 9 and 10 respectively, indicating suggestive linkage). A subsequent segregation analysis of an F2 intercross between the C57BL/6N and BALB/CAnN mice indicated that there were at least two major genetic factors responsible for SMG distribution. The loci indicated in the RI analysis were included in a targeted genome scan involving 235 F2 intercross animals (C57BL/6N and BALB/CAnN strain intercross). The genome scan confirmed the locus on Chr 9 (between genetic markers D9Mit11 and D9Mit182), designated Smgd1, as significantly linked to the SMG distribution phenotype (peak LOD score 5.8) within a 95% confidence interval of 12 cM. Received: 26 June 2000 / Accepted: 18 September 2000  相似文献   

13.
Lambda clones of mouse DNA from BALB/c and C57BL/10, each containing an array of telomere hexamers, were localized by FISH to a region close to the telomere of Chr 13. Amplification of mouse genomic DNA with primers flanking SSRs within the cloned DNA showed several alleles, which were used to type eight sets of RI strains. The two lambda clones contained allelic versions of the interstitial telomere array, Tel-rs4, which is 495 bp in C57BL/10 and which includes a variety of sequence changes from the consensus telomere hexamer. Comparison of the segregation of the amplification products of the SSRs with the segregation of other loci in an interspecies backcross (C57BL/6JEi × SPRET/Ei) F1× SPRET/Ei shows recombination suppression, possibly associated with ribosomal DNA sequences present on distal Chr 13 in Mus spretus, when compared with recombination in an interstrain backcross, (C57BL/6J × DBA/J) F1× C57BL/6J, and with the MIT F2 intercross. Analysis of recombination in females using a second interstrain backcross, (ICR/Ha × C57BL/6Ha) F1× C57BL/6Ha, also indicates recombination suppression when compared with recombination in males of the same strains, using backcross C57BL/6Ha × (ICR/Ha × C57BL/6Ha) F1. Thus, more than one cause may contribute to recombination suppression in this region. The combined order of the loci typed was D13Mit37–D13Mit30–D13Mit148–(D13Rp1, 2, 3, 4, Tel-rs4)–D13Mit53–D13Mit196–D13Mit77–(D13Mit78, 35). Data from crosses where apparently normal frequencies of recombination occur suggest that the telomere array is about 6 map units proximal to the most distal loci on Chr 13. This distance is consistent with evidence from markers identified in two YAC clones obtained from the region. Received: 24 September 1996/Accepted: 20 January 1997  相似文献   

14.
C57BL/6J-c2J (c2J) albino mice showed much less damage to their photoreceptors after exposure to prolonged light than BALB/c mice and seven other albino strains tested. There were no gender differences, and preliminary studies suggested that the c2J relative protective effect was a complex trait. A genome-wide scan using dinucleotide repeat markers was carried out for the analysis of 194 progeny of the backcross (c2J × BALB/c)F1× c2J and the thickness of the outer nuclear layer (ONL) of the retina was the quantitative trait reflecting retinal damage. Our results revealed a strong and highly significant quantitative trait locus (QTL) on mouse Chromosome (Chr) 3 that contributes almost 50% of the c2J protective effect, and three other very weak but significant QTLs on Chrs 9, 12, and 14. Interestingly, the Chrs 9 and 12 QTLs corresponded to relative susceptibility alleles in c2J (or relative protection alleles in BALB/c), the opposite of the relative protective effect of the QTLs on Chrs 3 and 14. We mapped the Rpe65 gene to the apex of the Chr 3 QTL (LOD score = 19.3). Northern analysis showed no difference in retinal expression of Rpe65 message between c2J and BALB/c mice. However, sequencing of the Rpe65 message revealed a single base change in codon 450, predicting a methionine in c2J and a leucine in BALB/c. When the retinas of aging BALB/c and c2J mice reared in normal cyclic light were compared, the BALB/c retinas showed a small but significant loss of photoreceptor cells, while the c2J retinas did not. Finding light damage-modifying genes in the mouse may open avenues of study for understanding age-related macular degeneration and other retinal degenerations, since light exposures may contribute to the course of these diseases. Received: 14 December 1999 / Accepted: 18 February 2000  相似文献   

15.
Low infiltration of lymphocytes into cancers is associated with poor prognosis, but the reasons why some patients exhibit a low and others a high infiltration of tumors are unknown. Previously we mapped four loci (Lynf1–Lynf4) controlling lymphocyte infiltration of mouse lung tumors. These loci do not encode any of the molecules that are involved in traffic of lymphocytes. Here we report a genetic relationship between these loci and the control of production of IFNγ in allogeneic mixed lymphocyte cultures (MLC). We found that IFNγ production by lymphocytes of O20/A mice is lower than by lymphocytes of OcB-9/Dem mice (both H2 pz ) stimulated in MLC by irradiated splenocytes of C57BL/10SnPh (H2 b ) or BALB/cHeA (H2 d ) mice, or by ConA. IFNγ production in MLCs of individual (O20 × OcB-9)F2 mice stimulated by irradiated C57BL/10 splenocytes and genotyped for microsatellite markers revealed four IFNγ-controlling loci (Cypr4-Cypr7), each of which is closely linked with one of the four Lynf loci and with a cluster of susceptibility genes for different tumors. This suggests that inherited differences in certain lymphocyte responses may modify their propensity to infiltrate tumors and their capacity to affect tumor growth.  相似文献   

16.
Thymocytes, isolated 6 days following subcutaneous (sc) transplantation of BALB/c MOPC-315 plasmacytoma into F1 (BALB/c × C57BL) hybrid mice, when injected sc into normal syngeneic mice, caused the development of a solid sc tumor. The cells of the newly developed tumor were of a mixed population of θ+F1 (BALB/c × C57BL) and θ? BALB/c cells (approximately 1:1), which represents a new type of mixed T cell-plasma cell neoplasm. Efforts were made to isolate the transformed thymocytes (θ+) from the plasmacytoma (θ?) cells in the new tumor, exploiting differences in their surface properties. Treatment of the mixed tumor cell population with peanut agglutinin (PNA) revealed that only the T tumor cells were agglutinated. The agglutinated cells were recovered after dispersing the clumps with d-galactose (0.15 M) and consisted of 95% θ+ cells. The PNA-agglutinated cells were found to induce a similar tumor (85% θ+ cells) when injected sc into F1 (BALB/c × C57BL) mice.  相似文献   

17.
Nearly all F1 male mice with Dh/+ genotype between DDD female and DH–Dh/+ male die within a few days after birth; however, this is not observed in the reciprocal cross. The F1 Dh/+ males usually exhibit growth retardation prior to death. To identify the putative genetic locus or loci in DDD genome that cause the abnormalities in the presence of the Dh, a linkage analysis was carried out in backcross progeny of a cross of (DDD female × DH–+/+ male) F1 female × DH–Dh/+ male. Appearance of growth retardation was examined from the day of birth, and both growth-retarded and normally weaned Dh/+ males were genotyped for microsatellite marker loci spanning autosomes and the X Chromosome (Chr). Significant evidence for linkage was identified on the distal edge of the X Chr, near the microsatellite marker of DXMit135. Furthermore, among mice from DDD female × reciprocal F1 Dh/+ male produced between DH–Dh/+ and progenitor strains (C57BL/6J, C3H/HeJ and BALB/cA), only the progeny from ♀DDD ×♂(♀DH–Dh/+×♂C3H/HeJ) F1 Dh/+ male did not show any lethality and/or growth retardation. Thus, the lethality in F1 Dh/+ males accompanied by growth retardation is caused by the interactions between the Dh gene, X Chr, and Y Chr. Based on the CAG repeat sequence length polymorphism among Mus musculus musculus Sry gene, C3H/HeJ was different from C57BL/6J, BALB/cA, and DH. These data suggest that there are at least two functional types of Y Chr in Mus musculus musculus. Received: 22 January 1999 / Accepted: 5 April 1999  相似文献   

18.
How allelic diversity affects neural mechanisms to produce behavioral variation is largely unknown. The elevated plus maze, consisting of open and closed arms, has been used as a model of behavioral variation in rodent exploration. Under dim illumination the nature of the sensory stimuli that influence arm choice is uncertain. Two inbred mouse strains, A/J (Tyr c /Tyr c , the albino phenotype, mutation in tyrosinase) with a strong preference for closed arm entry, and CBA/J (Pdeb rdl /Pdeb rdl , the retinal degeneration phenotype, mutation in the β-subunit of rod cGMP phosphodiesterase), with a weak preference for open arm entry, were studied under varying light. Because behavioral differences persist under red light, variation in light perception is not likely to fully account for variation in arm choice. To identify genetic factors influencing arm choice (100 × Open arm entries/Total arm entries) quantitative trait loci analyses (QTL) were performed on (A/J × CBA/J)F2 mice. Two QTLs, one of which includes PDEB, were identified on Chr 5 (LOD > 10) and account for > 30% of the behavioral variation in arm preference. Tyr (Chr 7, 44 cM) was linked to closed arm entries but not arm preference, and is unlikely to be acting through a direct effect on light perception, because A/J arm entries were not affected by red light and there was no interaction with PDEB in the (A/J × CBA/J)F2 mice. Whether the candidate QTLs on Chr 5 affect arm choice through an effect on light perception is unknown, but phenotypic differences between F2 mice with retinal degeneration and CBA/J mice and F2 mice with albinism and A/J mice suggest that factors other than light sensitivity contribute to arm preference in these two strains. Received: 11 January 2001 / Accepted: 22 March 2001  相似文献   

19.
Mice of the H-2b haplotype responded to the sequential polymer poly(Tyr-Glu-Ala-Gly) in the in vitro T-cell proliferative assay, irrespective of whether they were homozygous or heterozygous at the H-2b locus. The antibody responses of the H-2b congenic mice to this polymer were variable, with A.BY and BALB.B showing responses better than those of C57BL/6 and C57BL/10 strains. The antibody responses of the F1 progeny of (responder × nonresponder) strains of mice to this polymer are generally lower than the responder parents. F1 mice with C57BL/10 background were the poorest responders. Studies with F2 mice and backcross progenies of selective breeding of high and low antibody responder (C57BL/6 × BALB/c) F1 to high responder C57BL/6 mice indicated that both non-H-2 genes and H-2 gene dosage effects influenced the magnitude of the humoral antibody responses. Animals having low responder non-H-2 background and only half the dosage of the responder immune response genes has greatly diminished antibody responses.  相似文献   

20.
A genetic analysis was made of the ease of tolerance induction to bovine γ-globulin (BGG) in DBA/2, BALB/c, F1 and backcross generation mice. Like parental DBA/2 mice, the F1 generation of BALB/c × DBA/2 becomes tolerant when treated with 2 mg BGG. A backcross of this F1 to DBA/2 parents produced mice that all became tolerant to this dose of BGG. A backcross of F1 mice to BALB/c parents produced 50% offspring tolerized by the same dose of BGG and 50% resistant to tolerance induction.The data suggest a single autosomal locus affecting tolerance induction. Data presented elsewhere suggest that the locus affects macrophage function. We propose that this locus be called tolerance (symbol Tol-l) and the two alleles be (Tol-la (DBA/2 type) and Tol-lb (BALB/c type) with Tol-la being dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号