首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small β-amyloid (Aβ) 1–42 aggregates are toxic to neurons and may be the primary toxic species in Alzheimer's disease (AD). Methods to reduce the level of Aβ, prevent Aβ aggregation, and eliminate existing Aβ aggregates have been proposed for treatment of AD. A tricyclic pyrone named CP2 is found to prevent cell death associated with Aβ oligomers. We studied the possible mechanisms of neuroprotection by CP2. Surface plasmon resonance spectroscopy shows a direct binding of CP2 with Aβ42 oligomer. Circular dichroism spectroscopy reveals monomeric Aβ42 peptide remains as a random coil/α-helix structure in the presence of CP2 over 48 h. Atomic force microscopy studies show CP2 exhibits similar ability to inhibit Aβ42 aggregation as that of Congo red and curcumin. Atomic force microscopy closed-fluid cell study demonstrates that CP2 disaggregates Aβ42 oligomers and protofibrils. CP2 also blocks Aβ fibrillations using a protein quantification method. Treatment of 5× familial Alzheimer's disease mice, a robust Aβ42-producing animal model of AD, with a 2-week course of CP2 resulted in 40% and 50% decreases in non-fibrillar and fibrillar Aβ species, respectively. Our results suggest that CP2 might be beneficial to AD patients by preventing Aβ aggregation and disaggregating existing Aβ oligomers and protofibrils.  相似文献   

2.
3.
Abstract: Amyloid β-peptide (Aβ) is the principal component of neuritic plaques in the brain in Alzheimer's disease (AD). Recent studies revealed that Aβ can be neurotoxic by a mechanism involving free radical production and loss of cellular ion homeostasis, thus implicating Aβ as a key factor in the pathogenesis of AD. However, other proteins are present in plaques in AD, including the protease thrombin and protease nexin-1 (PN1), a thrombin inhibitor. We therefore tested the hypothesis that thrombin and PN1 modify neuronal vulnerability to Aβ toxicity. In dissociated rat hippocampal cell cultures the toxicity of Aβ was significantly enhanced by coincubation with thrombin, whereas PN1 protected neurons against Aβ toxicity. Aβ induced an increase in levels of intracellular peroxides and calcium. Thrombin enhanced, and PN1 attenuated, the accumulation of peroxides and calcium induced by Aβ. Taken together, these data demonstrate that thrombin and PN1 have opposing effects on neuronal vulnerability to Aβ and suggest that thrombin and PN1 play roles in the pathogenesis of neuronal injury in AD.  相似文献   

4.
Abstract: Increased amounts of β-amyloid (Aβ) peptide deposits are found in Alzheimer's disease brain. These amyloid deposits have been implicated in the pathophysiology of this common dementing illness. Aβ peptides have been shown to be toxic to neurons in cell culture, and this toxicity is critically dependent on the aggregation of the peptide into cross-β-pleated sheet fibrils. Also, in vivo and postmortem NMR studies have shown changes in certain brain membrane phospholipid metabolites in normal aging and more extensive alterations in patients with Alzheimer's disease. The finding that membrane phospholipids affect the aggregation of Aβ suggests that the abnormalities in membrane metabolism found in Alzheimer's disease could affect the deposition of Aβ in vivo. Therefore, we examined the effect of membrane phospholipid metabolites that are altered in Alzheimer's disease brain on the aggregation of Aβ(1–40) using a light scattering method. Certain metabolites (glycerophosphocholine, glycerophosphoethanolamine, and α-glycerophosphate) augment the aggregation of Aβ. Other membrane phospholipid metabolites (phosphocholine, phosphoethanolamine, and inositol-1-phosphate) have no effect. We conclude that increased membrane phospholipid metabolite concentrations may play a role in the deposition of Aβ seen in normal aging and the even greater deposition of Aβ observed in Alzheimer's disease.  相似文献   

5.
Abstract: Large numbers of neuritic plaques surrounded by reactive astrocytes are characteristic of Alzheimer's disease (AD). There is a large body of research supporting a causal role for the amyloid β peptide (Aβ), a main constituent of these plaques, in the neuropathology of AD. Several hypotheses have been proposed to explain the toxicity of Aβ including free radical injury and excitotoxicity. It has been reported that treatment of neuronal/astrocytic cultures with Aβ increases the vulnerability of neurons to glutamate-induced cell death. One mechanism that may explain this finding is inhibition of the astrocyte glutamate transporter by Aβ. The aim of the current study was to determine if Aβs inhibit astrocyte glutamate uptake and if this inhibition involves free radical damage to the transporter/astrocytes. We have previously reported that Aβ can generate free radicals, and this radical production was correlated with the oxidation of neurons in culture and inhibition of astrocyte glutamate uptake. In the present study, Aβ (25–35) significantly inhibited l -glutamate uptake in rat hippocampal astrocyte cultures and this inhibition was prevented by the antioxidant Trolox. Decreases in astrocyte function, in particular l -glutamate uptake, may contribute to neuronal degeneration such as that seen in AD. These results lead to a revised excitotoxicity/free radical hypothesis of Aβ toxicity involving astrocytes.  相似文献   

6.
Human sirtuins are a family of seven conserved proteins (SIRT1-7). The most investigated is the silent mating type information regulation-2 homolog (SIRT1, NM_012238 ), which was associated with neuroprotection in models of polyglutamine toxicity or Alzheimer's disease (AD) and whose activation by the phytocompound resveratrol (RES) has been described. We have examined the neuroprotective role of RES in a cellular model of oxidative stress, a common feature of neurodegeneration. RES prevented toxicity triggered by hydrogen peroxide or 6-hydroxydopamine (6-OHDA). This action was likely mediated by SIRT1 activation, as the protection was lost in the presence of the SIRT1 inhibitor sirtinol and when SIRT1 expression was down-regulated by siRNA approach. RES was also able to protect SK-N-BE from the toxicity arising from two aggregation-prone proteins, the AD-involved amyloid-β (1-42) peptide (Aβ42) and the familiar Parkinson's disease linked α-synuclein(A30P) [α-syn(A30P)]. Alpha-syn(A30P) toxicity was restored by sirtinol addition, while a partial RES protective effect against Aβ42 was found even in presence of sirtinol, thus suggesting a direct RES effect on Aβ42 fibrils. We conclude that SIRT1 activation by RES can prevent in our neuroblastoma model the deleterious effects triggered by oxidative stress or α-syn(A30P) aggregation, while RES displayed a SIRT1-independent protective action against Aβ42.  相似文献   

7.
Several small molecule ligands for amyloid-β (Aβ) fibrils deposited in brain have been developed to facilitate radiological diagnosis of Alzheimer's disease (AD). Recently, the build-up of Aβ oligomers (AβO) in brain has been recognized as an additional hallmark of AD and may play a more significant role in early stages. Evidence suggests that quantitative assessment of AβO would provide a more accurate index of therapeutic effect of drug trials. Therefore, there is an urgent need to develop methods for efficient identification as well as structural analysis of AβO. We found that some well established amyloid ligands, analogs of Congo red and thioflavin-T (ThT), bind AβO with high affinity and detect AβO in vitro and in vivo . Binding studies revealed the presence of binding sites for Congo red- and thioflavin-T-analogs on AβO. Furthermore, these ligands can be used for imaging intracellular AβO in living cells and animals and as positive contrast agent for ultrastructural imaging of AβO, two applications useful for structural analysis of AβO in cells. We propose that by improving the binding affinity of current ligands, in vivo imaging of AβO is feasible by a 'signal subtraction' procedure. This approach may facilitate the identification of individuals with early AD.  相似文献   

8.
Abstract: Activation of the classical complement pathway has been widely investigated in recent years as a potential mechanism for the neuronal loss and neuritic dystrophy characteristic of Alzheimer's disease (AD) pathogenesis. We have previously shown that amyloid β peptide (Aβ) is a potent activator of complement, and recent evidence suggesting that the assembly state of Aβ is crucial to the progress of the disease prompted efforts to determine whether the ability of Aβ to activate the classical complement pathway is a function of the aggregation state of the peptide. In this report, we show that the fibrillar aggregation state of Aβ, as determined by thioflavin T fluorometry, electron microscopy, and staining with Congo red and thioflavine S, is precisely correlated with the ability of the peptide to induce the formation of activated fragments of the complement proteins C4 and C3. These results suggest that the classical complement pathway provides a mechanism whereby complement-dependent processes may contribute to neuronal injury in the proximity of fibrillar but not diffuse Aβ deposits in the AD brain.  相似文献   

9.
Abstract: There is mounting evidence that at least some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the β-amyloid precursor protein (βAPP). Most research has focused on the amyloid β protein (Aβ), which has been shown to possess ion channel activity. However, the possible role of other cleaved products of the βAPP is less clear. We have investigated the ability of various products of βAPP to induce membrane ion currents by applying them to Xenopus oocytes, a model system used extensively for investigating electrophysiological aspects of cellular, including neuronal, signalling. We focussed on the 105-amino-acid C-terminal fragment (CT105) (containing the full sequence Aβ), which has previously been found to be toxic to cells, although little is known about its mode of action. We have found that CT105 is exceedingly potent, with a threshold concentration of 100–200 n M , in inducing nonselective ion currents when applied from either outside or inside the oocyte and is more effective than either βAPP or the Aβ fragments, β25–35 or β1–40. The ion channel activity of CT105 was concentration dependent and blocked by a monoclonal antibody to Aβ. These results suggest the possible involvement of CT105 in inducing the neural toxicity characteristic of AD.  相似文献   

10.
Zeng Y  Han X 《Journal of neurochemistry》2008,106(3):1275-1286
Amyloid-β (Aβ) accumulation and fibril formation are key pathologic characteristics of Alzheimer's disease (AD). We have previously found that sulfatide depletion occurs at the earliest stages of AD. To further identify the role of sulfatides in the pathogenesis of AD as well as the interactions between apolipoprotein E (apoE), sulfatides, and Aβ peptides, we examined alterations in the clearance of apoE-mediated Aβ peptides after sulfatide supplementation to cell culture systems. We demonstrated that sulfatides markedly facilitate apoE-mediated clearance of Aβ peptides endogenously generated from H4-APPwt cells through an endocytotic pathway. Moreover, we found that the uptake of Aβ42 mediated by sulfatides was selective in comparison to that of Aβ40. We excluded the possibility that the supplementation of sulfatides and/or apoE altered the production of Aβ peptides from H4-APPwt cells through determination of the clearance of Aβ peptides from conditioned H4-APPwt cell media by neuroblastoma cells which do not appreciably generate Aβ peptides. Finally, we demonstrated that the sulfate galactose moiety of sulfatides is essential for the sulfatide-facilitated clearance of Aβ peptides. Collectively, the current study provides insight into a molecular mechanism leading to Aβ clearance/deposition, highlights the significance of sulfatide deficiency at the earliest clinically recognizable stage of AD, and identifies a potential new direction for therapeutic intervention for the disease.  相似文献   

11.
Abstract: β-Amyloid peptides (Aβ) are deposited in an aggregated fibrillar form in both diffuse and senile plaques in the brains of patients with Alzheimer's disease. The neurotoxicity of Aβ in cultured neurons is dependent on its aggregation state, but the factors contributing to aggregation and fibril formation are poorly understood. In the present study, we investigated whether α2-macroglobulin (α2M), a protein present in neuritic plaques and elevated in Alzheimer's disease brain, is a potential regulatory factor for Aβ fibril formation. Previous studies in our laboratory have shown that α2M is an Aβ binding protein. We now report that, in contrast to another plaque-associated protein, α1-antichymotrypsin, α2M coincubated with Aβ significantly reduces aggregation and fibril formation in vitro. Additionally, cultured fetal rat cortical neurons are less vulnerable to the toxic actions of aged Aβ following pretreatment with α2M. We postulate that α2M is able to maintain Aβ in a soluble state, preventing fibril formation and associated neurotoxicity.  相似文献   

12.
Alzheimer's disease (AD) is a progressive neurodegenerative disease caused by genetic and non-genetic factors. Most AD cases may be triggered and promoted by non-genetic environmental factors. Clinical studies have reported that patients with AD show enhanced baseline levels of stress hormones in the blood, but their physiological significance with respect to the pathophysiology of AD is not clearly understood. Here we report that AD mouse models exposed to restraints for 2 h daily on 16 consecutive days show increased levels of β-amyloid (Aβ) plaque deposition and commensurable enhancements in Aβ(1–42), tau hyperphosphorylation, and neuritic atrophy of cortical neurons. Repeated restraints in Tg2576 mice markedly increased metabolic oxidative stress and down-regulated the expression of MMP-2, a potent Aβ-degrading enzyme, in the brain. These stress effects were reversed by blocking the activation of the hypothalamus-pituitary-adrenal gland axis with the corticotropin-releasing factor receptor antagonist NBI 27914, further suggesting that over-activation of the hypothalamic-pituitary-adrenal axis is required for stress-enhanced AD-like pathogenesis. Consistent with these findings, corticosteroid treatments to cultured primary cortical neurons increased metabolic oxidative stress and down-regulated MMP-2 expression, and MMP-2 down-regulation was reversed by inhibition of oxidative stress. These results suggest that behavioral stress aggravates AD pathology via generation of metabolic oxidative stress and MMP-2 down-regulation.  相似文献   

13.
The deposition of β-amyloid (Aβ) peptides in the brain is an early and invariant feature of all forms of Alzheimer's disease (AD). As such, a major focus of AD research has been the elucidation of the mechanisms responsible for the generation of Aβ. As with any peptide, however, the degree of Aβ accumulation is dependent not only on its production, but also on the mechanisms responsible for its removal. In cell-based and in vitro assays we have identified endothelin-converting enzymes (ECEs) as novel Aβ-degrading enzymes that appear to cleave predominately in an intracellular compartment. Overexpression of ECE-1 in cells that lack endogenous ECE activity reduces Aβ accumulation by up to 90%, and this effect is completely reversed by treatment of the cells with phosphoramidon. Additionally, we have shown that recombinant soluble ECE-1 is capable of hydrolyzing synthetic Aβ40 and Aβ42 in vitro at multiple sites, with a favorable kinetic profile. While several enzymes have been identified that can degrade Aβ in vitro , only neprilysin has thus far been reported to influence Aβ accumulation in the brains of knock-out mice. To examine the physiological role of ECE activity on Aβ accumulation in the brain we compared the amount of Aβ in wild-type and ECE-2 null mice. A significant elevation in both Aβ40 and Aβ42 was observed in the ECE-2 null animals compared to their wild-type littermates. These data provide direct evidence of a physiological role for this enzyme in limiting Aβ accumulation in the brain.
Acknowledgements: Supported by Smith Fellowships to C.E. and E.E., a Bursak Fellowship to E.E., and by the Mayo Foundation for Medical Education and Research.  相似文献   

14.
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by numerous pathological features including the accumulation of neurotoxic amyloid-β (Aβ) peptide. There is currently no effective therapy for AD, but the development of therapeutic strategies that target the cell membrane is gaining increased interest. The amyloid precursor protein (APP) from which Aβ is formed is a membrane-bound protein, and Aβ production and toxicity are both membrane mediated events. This review describes the critical role of cell membranes in AD with particular emphasis on how the composition and structure of the membrane and its specialized regions may influence toxic or benign Aβ/APP pathways in AD. The putative role of copper (Cu) in AD is also discussed, and we highlight how targeting the cell membrane with Cu complexes has therapeutic potential in AD.  相似文献   

15.
Abstract: Peroxidation of membrane lipids results in release of the aldehyde 4-hydroxynonenal (HNE), which is known to conjugate to specific amino acids of proteins and may alter their function. Because accumulating data indicate that free radicals mediate injury and death of neurons in Alzheimer's disease (AD) and because amyloid β-peptide (Aβ) can promote free radical production, we tested the hypothesis that HNE mediates Aβ25-35-induced disruption of neuronal ion homeostasis and cell death. Aβ induced large increases in levels of free and protein-bound HNE in cultured hippocampal cells. HNE was neurotoxic in a time- and concentration-dependent manner, and this toxicity was specific in that other aldehydic lipid peroxidation products were not neurotoxic. HNE impaired Na+,K+-ATPase activity and induced an increase of neuronal intracellular free Ca2+ concentration. HNE increased neuronal vulnerability to glutamate toxicity, and HNE toxicity was partially attenuated by NMDA receptor antagonists, suggesting an excitotoxic component to HNE neurotoxicity. Glutathione, which was previously shown to play a key role in HNE metabolism in nonneuronal cells, attenuated the neurotoxicities of both Aβ and HNE. The antioxidant propyl gallate protected neurons against Aβ toxicity but was less effective in protecting against HNE toxicity. Collectively, the data suggest that HNE mediates Aβ-induced oxidative damage to neuronal membrane proteins, which, in turn, leads to disruption of ion homeostasis and cell degeneration.  相似文献   

16.
Abstract: Amyloid β protein (Aβ), 39–43 amino acids long, is the principal constituent of the extracellular amyloid deposits in brain that are characteristic of Alzheimer's disease (AD). Several lines of evidence indicate that Aβ may play an important role in the pathogenesis of AD. However, there are several discrepancies between the production of Aβ and the development of the disease. Thus, Aβ may not be the sole active fragment of β-amyloid precursor protein (βAPP) in the neurotoxicity associated with AD. Consequently, the possible effects of other cleaved products of βAPP need to be explored. The recent concentration on other potentially amyloidogenic products of βAPP has produced interesting candidates, the most promising of which are the amyloidogenic carboxyl-terminal (CT) fragments of βAPP. This review discusses a possible etiological role of CT fragments of βAPP in AD.  相似文献   

17.
Brain Expression of Apolipoproteins E, J, and A-I in Alzheimer's Disease   总被引:4,自引:1,他引:3  
Abstract: Inheritance of the ε4 allele of apolipoprotein (apo) E is associated with increased risk of Alzheimer's disease (AD) and with increased β-amyloid peptide (Aβ) deposition in the cortex. Apo E is a member of a family of exchangeable apos, characterized by the presence of amphipathic α-helical segments that allow these molecules to act as surfactants on the surface of lipoprotein particles. Two members of this family, apo E and apo J, have been shown to bind soluble Aβ, and both are associated with senile plaques in the AD cortex. We now have studied the pattern of brain apo expression and found that five members of this class are present: apo A-I, A-IV, D, E, and J. By contrast, apos A-II, B, and C-II were not detectable. Immunohistochemistry revealed that, in addition to apo E and apo J, apo A-I immunostained occasional senile plaques in AD cortex. Immunoblot analysis showed no difference in the relative amounts of any of these apos in tissue homogenates of frontal lobe from AD or control patients. Comparison by APO E genotype showed no differences in the amount of apo E in brain among APO E ε3/3, ε3/4, or ε4/4 individuals; however, a significant decrease in the amount of apo J was associated with the APO E ε4 allele. No differences in apo J levels were detected in CSF samples of AD subjects. We propose that several members of the exchangeable apo family may interact with Aβ deposits in senile plaques through common amphipathic α-helical domains. Competition among these molecules for binding of Aβ or Aβ aggregates may influence the deposition of Aβ in senile plaques.  相似文献   

18.
One hallmark of Alzheimer disease (AD) is the extracellular deposition of the amyloid β-peptide (Aβ) in senile plaques. Two major forms of Aβ are produced, 40 (Aβ40) and 42 (Aβ42) residues long. The most abundant form of Aβ is Aβ40, while Aβ42 is more hydrophobic and more prone to form toxic oligomers and the species of particular importance in early plaque formation. Thus, the length of the hydrophobic C-terminal seems to be very important for the oligomerization and neurotoxicity of the Aβ peptide. Here we investigated which Aβ species are deposited in AD brain. We analyzed plaque cores, prepared from occipital and frontal cortex, from sporadic and familial AD cases and performed a quantitative study using Aβ standard peptides. Cyanogen bromide was used to generate C-terminal Aβ fragments, which were analyzed by HPLC coupled to an electrospray ionisation ion trap mass spectrometer. We found a longer peptide, Aβ43, to be more frequent than Aβ40. No variants longer than Aβ43 could be observed in any of the brains. Immunohistochemistry was performed and was found to be in line with our findings. Aβ1-43 polymerizes rapidly and we suggest that this variant may be of importance for AD.  相似文献   

19.
The mechanisms underlying neuronal degeneration in Alzheimer's disease (AD) are very controversial and none more so than whether apoptosis plays a role. Although neurons in AD face a wide assortment of apoptogenic stimuli, the temporal dichotomy between the acuteness of apoptosis vs. the chronicity of AD suggests that apoptosis should be extremely rare in AD. In this regard, survival factor(s) must be involved. In this study, we investigated Bcl-w, a pro-survival member of the Bcl-2 family. Although expressed at low levels in brains of control cases, Bcl-w is significantly up-regulated in AD as shown by both immunocytochemistry and immunoblot analysis. Astonishingly, increased Bcl-w was found to be associated with neurofibrillary pathologies in AD, which was further demonstrated by an EM study. Since neuronal death in AD is thought to be triggered by increased production of amyloid-β (Aβ), it was interesting to find that exposure of human M17 neuroblastoma cells to Aβ1–42 (1 n m −10 μ m ) dramatically up-regulates Bcl-w protein levels. Such increases may be a protective response that attenuates apoptotic processes. Consistent with this, transfected M17 cells overexpressing Bcl-w were protected from both STS-induced and Aβ-induced apoptosis compared to vector-transfected controls. Notably, both tau phosphorylation and p38 is inhibited in Bcl-w transfected cells which may contribute to the neuroprotective role of Bcl-w. Taken together, these set of in vitro and in vivo results suggest that Bcl-w plays an important protective role in neurons in the AD brain.  相似文献   

20.
Alzheimer's disease (AD) is thought by many to result from the accumulation of the neurotoxic amyloid-β (Aβ) peptide in brain parenchyma. The process by which Aβ is proteolytically derived from the larger amyloid precursor protein (APP) has been the focus of much attention in the AD research field over the past decade. Recently, several of the proteins directly involved in the generation of Aβ have been identified and characterized providing a number of viable therapeutic targets for the treatment of AD. However, the cellular mechanisms by which these proteins interact in the proteolytic processing of APP have not been well defined, nor are they readily apparent when one considers what is known about the intracellular localization and trafficking of the various participants. This article will review the underlying cell biology of Aβ production and discuss the mechanistic options for APP processing given the current knowledge of the proteases involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号