首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
sufS was found to suppress the only known suppressible-1 frameshift mutation, trpE91, at a site identified as GGA and mapped within the single gene of the only tRNA that can decode GGA in Escherichia coli. It mapped to the same gene in Salmonella typhimurium. sufS alleles were recessive, and dominant alleles could not be isolated. This is in contrast to all other tRNA structural gene mutations identified thus far that cause frameshift suppression. The recessiveness implies that all sufS alleles are poor competitors against their wild-type tRNA(Gly2) counterparts. The base G immediately 5' of the GGA suppression site influenced the level but was not critical for suppression by sufS601. From this result, it is inferred that sufS601 causes frameshifting by doublet decoding.  相似文献   

2.
A J Herr  J F Atkins    R F Gesteland 《The EMBO journal》1999,18(10):2886-2896
Translating ribosomes bypass a 50 nucleotide coding gap in bacteriophage T4 gene 60 mRNA between codons 46 and 47 in order to synthesize the full-length protein. Bypassing of the coding gap requires peptidyl-tRNA2Gly detachment from a GGA codon (codon 46) followed by re-pairing at a matching GGA codon just before codon 47. Using negative selection, based on the sacB gene from Bacillus subtilis, Escherichia coli mutants were isolated which reduce bypassing efficiency. All of the mutations are in the gene for tRNA2Gly. Most of the mutations disrupt the hydrogen bonding interactions between the D- and T-loops (G18*psi55 and G19*C56) which stabilize the elbow region in nearly all tRNAs. The lone mutation not in the elbow region destabilizes the anticodon stem at position 40. Previously described Salmonella typhimurium mutants of tRNA2Gly, which reduce the stability of the T-loop, were also tested and found to decrease bypassing efficiency. Each tRNA2Gly mutant is functional in translation (tRNA2Gly is essential), but has a decoding efficiency 10- to 20-fold lower than wild-type. This suggests that rigidity of the elbow region and the anticodon stem is critical for both codon-anticodon stability and bypassing.  相似文献   

3.
A 50-nucleotide coding gap divides bacteriophage T4 gene 60 into two open reading frames. In response to cis-acting stimulatory signals encrypted in the mRNA, the anticodon of the ribosome-bound peptidyl tRNA dissociates from a GGA codon at the end of the first open reading frame and pairs with a GGA codon 47 nucleotides downstream just before the second open reading frame. Mutations affecting ribosomal protein L9 or tRNA(Gly)(2), the tRNA that decodes GGA, alter the efficiency of bypassing. To understand the mechanism of ribosome slippage, this work analyzes the influence of these bypassing signals and mutant translational components on -1 frameshifting at G GGA and hopping over a stop codon immediately flanked by two GGA glycine codons (stop-hopping). Mutant variants of tRNA(Gly)(2) that impair bypassing mediate stop-hopping with unexpected landing specificities, suggesting that these variants are defective in ribosomal P-site codon-anticodon pairing. In a direct competition between -1 frameshifting and stop-hopping, the absence of L9 promotes stop-hopping at the expense of -1 frameshifting without substantially impairing the ability of mutant tRNA(Gly)(2) variants to re-pair with the mRNA by sub-optimal pairing. These observations suggest that L9 defects may stimulate ribosome slippage by enhancing mRNA movement through the ribosome rather than by inducing an extended pause in translation or by destabilizing P-site pairing.Two of the bypassing signals, a cis-acting nascent peptide encoded by the first open reading frame and a stemloop signal located in the 5' portion of the coding gap, stimulate peptidyl-tRNA slippage independently of the rest of the gene 60 context. Evidence is presented suggesting that the nascent peptide signal may stimulate bypassing by destabilizing P-site pairing.  相似文献   

4.
We have identified a spontaneous mitochondrial mutation, mfs-1 (mitochondrial frameshift suppressor-1), which suppresses a + 1 frameshift mutation localized in the yeast mitochondrial oxi1 gene. The suppressor strain exhibits a single base change (C to U) at position 42 of the mitochondrial serine-tRNA (UCN). To our knowledge, this is the first reported case showing that a mutation in the anticodon stem of a tRNA can cause frameshift suppression. The expression and aminoacylation of the mutant tRNASer(UCN) are not significantly affected. However, the base change at position 42 has two effects: first, residue U27 of the mutant tRNA is not modified to pseudouridine as observed in wild-type tRNASer(UCN). Second, the base change and/or the lack of modification of U27 leads to an alteration in the secondary/tertiary structure of the mutant tRNA. It is possible that there are such structural changes in the anticodon loop that enable the tRNA to read a four base codon, UCCA, thus restoring the wild-type reading frame.  相似文献   

5.
In previous mutational studies with mutant trpA46 (Gly [GGA] --> Glu [GAA] at position 211 of the tryptophan synthetase alpha chain) of Escherichia coli, no missense suppressors were detected. Such suppressors have now been obtained by single mutations in gly Vins, the structural gene for a GGA/G-reading, mutationally altered form of gly V transfer ribonucleic acid (tRNA) (tRNA(Gly) which reads GGU/C). A trpA46 strain containing the gly Vins alteration was mutagenized with hydroxylamine, and suppressor mutations were detected in the prototrophs obtained. Eighteen independent suppressors were examined and shown to have alterations which map in the gly V region. Chromatography of the glycyl-tRNAs of one suppressed mutant on a benzoylated diethylaminoethyl-cellulose column revealed an alteration in the tRNA(ins) (Gly) peak. The trpA46 suppressor mutation thus appears to involve a change of tRNA(ins) (Gly) from a GGA/G (Gly) reader to a GAA (Glu) reader. Since this suppressor presumably retains the "wobble" pairing of gly Vins tRNA, it was used to select the conversion of GAU (Asp211) to GAG (Glu211) in the alpha chain. supD (serine-inserting amber suppressor) was then used to obtain the conversion of GAG (Glu211) to UAG211. Missense revertants of trpA (UAG211) are being isolated as a means of introducing new codons which can be used in the selection of additional missense suppressors.  相似文献   

6.
7.
Total transfer RNAs were extracted from highly purified potato mitochondria. From quantitative measurements, the in vivo tRNA concentration in mitochondria was estimated to be in the range of 60 microM. Total potato mitochondrial tRNAs were fractionated by two-dimensional polyacrylamide gel electrophoresis. Thirty one individual tRNAs, which could read all sense codons, were identified by aminoacylation, sequencing or hybridization to specific oligonucleotides. The tRNA population that we have characterized comprises 15 typically mitochondrial, 5 'chloroplast-like' and 11 nuclear-encoded species. One tRNA(Ala), 2 tRNAs(Arg), 1 tRNA(Ile), 5 tRNAs(Leu) and 2 tRNAs(Thr) were shown to be coded for by nuclear DNA. A second, mitochondrial-encoded, tRNA(Ile) was also found. Five 'chloroplast-like' tRNAs, tRNA(Trp), tRNA(Asn), tRNA(His), tRNA(Ser)(GGA) and tRNA(Met)m, presumably transcribed from promiscuous chloroplast DNA sequences inserted in the mitochondrial genome, were identified, but, in contrast to wheat (1), potato mitochondria do not seem to contain 'chloroplast-like' tRNA(Cys) and tRNA(Phe). The two identified tRNAs(Val), as well as the tRNA(Gly), were found to be coded for by the mitochondrial genome, which again contrasts with the situation in wheat, where the mitochondrial genome apparently contains no tRNA(Val) or tRNA(Gly) gene (2).  相似文献   

8.
9.
The study of suppressors of tryptophan synthase A protein missense mutations in Escherichia coli has led to the establishment of two nonadjacent genetic loci (gly V and gly W) specifying identical nucleotide sequences for a single isoaccepting species of glycine transfer ribonucleic acid (tRNA GLY 3 GGU/C). In one case, suppression of the missense mutation trpA78 was due to a mutation in a structural gene (gly W) for tRNA Gly 3 GGU/C. This mutation resulted in a base change in the anticodon and modification of an A residue adjacent to the 3' side of the anticodon, leading to the production of a tRNA Gly 3 UGU/C species. The resulting glyW51 (SU UGU/C) allele was mapped by interrupted mating and was located at approximately 37 min on the Escherichia coli genetic map. Other suppressor mutations affecting the primary sequence of tRNA Gly GGU/C and giving rise to the Ins and SU+A58 phenotypes were positioned at 86 min (glyV). Several independently arising missense suppressor mutations resulting in the SU+A78 phenotypes were isolated and mapped at these two genetic loci (glyV and glyW). The ratio of appearance of suppressor mutations at glyV and glyW suggests that there are three of four tRNAGly3 GGU/C structural gene copies at the glyV locus to one copy at the glyW locus. Structural genes for tRNA ly isoacceptors are now known at four distinct locations on the Escherichia coli chromosome: glyT (77 MIN), TRNA Gly 2 GGA/G; gly U (55 min), tRNAGly-1 minus; and gly V (86 MIN) AND GLYW (37 min), tRNAGly 3 GGU/C.  相似文献   

10.
In Salmonella typhimurium, the tRNA(m1G37)methyltransferase (the product of the trmD gene) catalyzes the formation of m1G37, which is present adjacent and 3' of the anticodon (position 37) in seven tRNA species, two of which are tRNA(Pro)CGG and tRN(Pro)GGG. These two tRNA species also exist as +1 frameshift suppressor sufA6 and sufB2, respectively, both having an extra G in the anticodon loop next to and 3' of m1G37. The wild-type form of the tRNA(m1G37)methyltransferase efficiently methylates these mutant tRNAs. We have characterized one class of mutant forms of the tRNA(m1G37)methyltransferase that does not methylate the sufA6 tRNA and thereby induce extensive frameshifting resulting in a nonviable cell. Accordingly, pseudorevertants of strains containing such a mutated trmD allele in conjunction with the sufA6 allele had reduced frameshifting activity caused by either a 9-nt duplication in the sufA6tRNA or a deletion of its structural gene, or by an increased level of m1G37 in the sufA6tRNA. However, the sufB2 tRNA as well as the wild-type counterparts of these two tRNAs are efficiently methylated by this class of structural altered tRNA(m1G37)methyltransferase. Two other mutations (trmD3, trmD10) were found to reduce the methylation of all potential tRNA substrates and therefore primarily affect the catalytic activity of the enzyme. We conclude that all mutations except two (trmD3 and trmD10) do not primarily affect the catalytic activity, but rather the substrate specificity of the tRNA, because, unlike the wild-type form of the enzyme, they recognize and methylate the wild-type but not an altered form of a tRNA. Moreover, we show that the TrmD peptide is present in catalytic excess in the cell.  相似文献   

11.
Mutations have been identified in Saccharomyces cerevisiae glycine tRNA genes that result in suppression of +1 frameshift mutations in glycine codons. Wild-type and suppressor alleles of genes encoding the two major glycine tRNAs, tRNA(GCC) and tRNA(UCC), were examined in this study. The genes were identified by genetic complementation and by hybridization to a yeast genomic library using purified tRNA probes. tRNA(UCC) is encoded by three genes, whereas approximately 15 genes encode tRNA(GCC). The frameshift suppressor genes suf1+, suf4+ and suf6+ were shown to encode the wild-type tRNA(UCC) tRNA. The suf1+ and suf4+ genes were identical in DNA sequence, whereas the suf6+ gene, whose DNA sequence was not determined, was shown by a hybridization experiment to encode tRNA(UCC). The ultraviolet light-induced SU F1-1 and spontaneous SU F4-1 suppressor mutations were each shown to differ from wild-type at two positions in the anticodon, including a +1 base-pair insertion and a base-pair substitution. These changes resulted in a CCCC four-base anticodon rather than the CCU three-base anticodon found in wild-type. The RNA sequence of tRNA(UCC) was shown to contain a modified uridine in the wobble position. Mutant tRNA(CCCC) isolated from a SU F1-1 strain lacked this modification. Three unlinked genes that encode wild-type tRNA(GCC), suf20+, trn2, and suf17+, were identical in DNA sequence to the previously described suf16+ frameshift suppressor gene. Spontaneous suppressor mutations at the SU F20 and SU F17 loci were analyzed. The SU F20-2 suppressor allele contained a CCCC anticodon. This allele was derived in two serial selections through two independent mutational events, a +1 base insertion and a base substitution in the anticodon. Presumably, the original suppressor allele, SU F20-1, contained the single base insertion. The SU F17-1 suppressor allele also contained a CCCC anticodon resulting from two mutations, a +1 insertion and a base substitution. However, this allele contained an additional base substitution at position 33 adjacent to the 5' side of the four-base anticodon. The possible origin and significance of multiple mutations leading to frameshift suppression is discussed.  相似文献   

12.
13.
The mutation sufY204 mediates suppression of a +1 frameshift mutation in the histidine operon of Salmonella enterica serovar Typhimurium and synthesis of two novel modified nucleosides in tRNA. The sufY204 mutation, which results in an amino-acid substitution in a protein, is, surprisingly, dominant over its wild-type allele and thus it is a "gain of function" mutation. One of the new nucleosides is 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) modified by addition of a C(10)H(17) side chain of unknown structure. Increased amounts of both nucleosides in tRNA are correlated to gene dosage of the sufY204 allele, to an increased efficiency of frameshift suppression, and to a decreased amount of the wobble nucleoside mnm(5)s(2)U34 in tRNA. Purified tRNA(Gln)(cmnm(5)s(2)UUG) in the mutant strain contains a modified nucleoside similar to the novel nucleosides and the level of aminoacylation of tRNA(Gln)(cmnm(5)s(2)UUG) was reduced to 26% compared to that found in the wild type (86%). The results are discussed in relation to the mechanism of reading frame maintenance and the evolution of modified nucleosides in tRNA.  相似文献   

14.
The pathogenic bacterium Helicobacter pylori utilizes two essential glutamyl-tRNA synthetases (GluRS1 and GluRS2). These two enzymes are closely related in evolution and yet they aminoacylate contrasting tRNAs. GluRS1 is a canonical discriminating GluRS (D-GluRS) that biosynthesizes Glu-tRNA(Glu) and cannot make Glu-tRNA(Gln). In contrast, GluRS2 is non-canonical as it is only essential for the production of misacylated Glu-tRNA(Gln). The co-existence and evident divergence of these two enzymes was capitalized upon to directly examine how GluRS2 acquired tRNA(Gln) specificity. One key feature that distinguishes tRNA(Glu) from tRNA(Gln) is the third position in the anticodon of each tRNA (C36 versus G36, respectively). By comparing sequence alignments of different GluRSs, including GluRS1s and GluRS2s, to the crystal structure of the Thermus thermophilus D-GluRS:tRNA(Glu) complex, a divergent pattern of conservation in enzymes that aminoacylate tRNA(Glu)versus those specific for tRNA(Gln) emerged and was experimentally validated. In particular, when an arginine conserved in discriminating GluRSs and GluRS1s was inserted into Hp GluRS2 (Glu334Arg GluRS2), the catalytic efficiency of the mutant enzyme (k(cat)/K(Mapp)) was reduced by approximately one order of magnitude towards tRNA(Gln). However, this mutation did not introduce activity towards tRNA(Glu). In contrast, disruption of a glycine that is conserved in all GluRS2s but not in other GluRSs (Gly417Thr GluRS2) generated a mutant GluRS2 with weak activity towards tRNA(Glu1). Synergy between these two mutations was observed in the double mutant (Glu334Arg/Gly417Thr GluRS2), which specifically and more robustly aminoacylates tRNA(Glu1) instead of tRNA(Gln). As GluRS1 and GluRS2 are related by an apparent gene duplication event, these results demonstrate that we can experimentally map critical evolutionary events in the emergence of new tRNA specificities.  相似文献   

15.
Primary structure of an unusual glycine tRNA UGA suppressor.   总被引:6,自引:1,他引:5       下载免费PDF全文
We have determined the nucleotide sequences of two UGA-suppressing glycine transfer RNAs. The suppressor tRNAs were previously shown to translate both UGA and UGG and to have arisen as a consequence of mutation in glyT, the gene for the GGA/G-reading glycine tRNA of Escherichia coli. In each mutant tRNA, the primary sequence change was the substitution of adenine for cytosine in the 3' position of the anticodon. In addition, a portion of mutant glyT tRNA molecules contained N6-(delta 2-isopentenyl)-2-thiomethyl adenine adjacent to the 3' end of the anticodon (nucleotide 37). The presence or absence of this hypermodification may be a determinant in some of the biological properties of the mutant tRNA.  相似文献   

16.
Wang X  Yan Q  Guan MX 《FEBS letters》2007,581(22):4228-4234
We report here the characterization of the yeast mto2 null mutants carrying wild-type mitochondrial DNA or 15S rRNA C1049G allele. The amounts of mitochondrial tRNA(Lys), tRNA(Glu), tRNA(Gln), tRNA(Leu), tRNA(Gly) and tRNA(Met) were markedly decreased but those of tRNA(Arg) and tRNA(His) were not affected in mto2 strains. The mto2 strains exhibited significant reduction in the aminoacylation of tRNA(Lys), tRNA(Leu) but almost no effect in those of tRNA(His). Interestingly, the strain carrying the C1049G allele exhibited an impairment of aminoacylation of those tRNAs. Furthermore, the steady-state levels of mitochondrial mRNA CYTB, COX1, COX2, COX3, and ATP6 were markedly decreased in mto2 strains. These data strongly indicate that unmodified tRNA caused by the deletion of MTO2 caused the instability of mitochondrial tRNAs and mRNAs and impairment of aminoacylation of tRNAs.  相似文献   

17.
Evidence for a unique first position codon-anticodon mismatch in vivo   总被引:3,自引:0,他引:3  
The Ser68(AGC) codon of the beta-lactamase gene was changed to the glycine codons GGA and GGC. With glycine at position 68, beta-lactamase is inactive because it does not have a nucleophilic side-chain to function in the reaction mechanism. The mutant SG68(GGA) allele had no detectable beta-lactamase activity; however, the mutant SG68(GGC) did produce a small amount of activity. Both mutant alleles produce comparable amounts of beta-lactamase protein in a maxi-cell system. To identify why these two "same-sense" beta-lactamase mutants differ phenotypically, we introduced the alleles into Escherichia coli strains with mutations that affect translational fidelity. The rpsD mutation, which decreases fidelity, significantly increased activity with the SG68(GGC) allele, while the rpsL mutation, which increases translational fidelity, had little effect on the beta-lactamase activity. The rpsD and rpsL alleles had no effect on the SG68(GGA) allele. From the allele specificity of the activity produced by the bla mutants, and from the differential effect of translational fidelity on the activity of the SG68(GGC) allele, we infer that tRNA(GCU)Ser, the AGU/C reading tRNA(Ser), mistranslates SG68(GGC) at a frequency of about 0.1%, and subsequently produces active beta-lactamase. This is the first observation of an A/G wobble with a wild-type tRNA at the first position of the codon-anticodon interaction.  相似文献   

18.
Y Huang  J Mak  Q Cao  Z Li  M A Wainberg    L Kleiman 《Journal of virology》1994,68(12):7676-7683
Human immunodeficiency virus (HIV) particles produced in COS-7 cells transfected with HIV type 1 (HIV-1) proviral DNA contain 8 molecules of tRNA(3Lys) per 2 molecules of genomic RNA and 12 molecules of tRNA1,2Lys per 2 molecules of genomic RNA. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a human tRNA3Lys gene, there is a large increase in the amount of cytoplasmic tRNA3Lys per microgram of total cellular RNA, and the tRNA3Lys content in the virus increases from 8 to 17 molecules per 2 molecules of genomic RNA. However, the total number of tRNALys molecules per 2 molecules of genomic RNA remains constant at 20; i.e., the viral tRNA1,2Lys content decreases from 12 to 3 molecules per 2 molecules of genomic RNA. All detectable tRNA3Lys is aminoacylated in the cytoplasm of infected cells and deacylated in the virus. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a mutant amber suppressor tRNA3Lys gene (in which the anticodon is changed from TTT to CTA), there is also a large increase in the relative concentration of cytoplasmic tRNA3Lys, and the tRNA3Lys content in the virus increases from 8 to 15 molecules per 2 molecules of genomic RNA, with a decrease in viral tRNA1,2Lys from 12 to 5 molecules per 2 molecules of genomic RNA. Thus, the total number of molecules of tRNALys in the virion remains at 20. The alteration of the anticodon has little effect on the viral packaging of this mutant tRNA in spite of the fact that it no longer contains the modified base mcm 5s2U at position 34, and its ability to be aminoacylated is significantly impaired compared with that of wild-type tRNA3Lys. Viral particles which have incorporated either excess wild-type tRNA3Lys or mutant suppressor tRNA3Lys show no differences in viral infectivity compared with wild-type HIV-1.  相似文献   

19.
Translation termination at UAG is influenced by the nature of the 5′ flanking codon inEscherichia coli. Readthrough of the stop codon is always higher in a strain with mutant (prfA1) as compared to wild-type (prfA+) release factor one (RF1). Isocodons, which differ in the last base and are decoded by the same tRNA species, affect termination at UAG differently in strains with mutant or wild-type RF1. No general preference of the last codon base to favour readthrough or termination can be found. The data suggest that RF1 is sensitive to the nature of the wobble base anticodon-codon interaction at the ribosomal peptidyl-tRNA binding site (P-site). For some isoaccepting P-site tRNAs (tRNA3ProversustRNA2Pro, tRNA4ThrversustRNA1,3Thr) the effect is different on mutant and wild-type RF1, suggesting an interaction between RF1 at the aminoacyl-tRNA acceptor site (A-site) and the P-site tRNA itself. The glycine codons GGA (tRNA2Gly) and GGG (tRNA2,3Gly) at the ribosomal P-site are associated with an almost threefold higher readthrough of UAG than any of the other 42 codons tested, including the glycine codons GGU/C, in a strain with wild-type RF1. This differential response to the glycine codons is lost in the strain with the mutant form of RF1 since readthrough is increased to a similar high level for all four glycine codons. High α-helix propensity of the last amino acid residue at the C-terminal end of the nascent peptide is correlated with an increased termination at UAG. The effect is stronger on mutant compared to wild-type RF1. The data suggest that RF1-mediated termination at UAG is sensitive to the nature of the codon-anticodon interaction of the wobble base, the last amino acid residue of the nascent peptide chain, and the tRNA at the ribosomal P-site.  相似文献   

20.
R F Gaber  M R Culbertson 《Gene》1982,19(2):163-172
The SUF16 frameshift suppressor locus encodes a glycine tRNA. The SUF16-1 suppressor tRNA is inferred by DNA sequence analysis to contain the four-base anticodon sequence 3'-CCCG-5' in place of the wild-type anticodon 3'-CCG-5'. SUF16-1 mediates translation of the four-base messenger RNA (mRNA) sequence 5'-GGGU-3' but apparently fails to act at the sequence 5'-GGGG-3'. A molecular model is presented that accounts for the observed specificity of tRNA-mediated frameshift suppression in Saccharomyces cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号