首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Lactating mammary glands of sheep were perfused for several hours in the presence of dl-[2-(14)C]ornithine or dl-[5-(14)C]arginine and received adequate quantities of acetate, glucose and amino acids. 2. In the [(14)C]ornithine experiment 1.4% of the casein and 1% of the expired carbon dioxide came from added ornithine; 96% of the total radioactivity in casein was recovered in proline; 13% of the proline of casein originated from plasma ornithine. 3. In this experiment the results of chemical degradation of proline of casein as well as relative specific activities in the isolated products are consistent with the view that ornithine is metabolized, by way of glutamic gamma-semialdehyde, to proline or glutamic acid. 4. In the [(14)C]arginine experiments 3% of the casein and 1% of the expired carbon dioxide came from arginine; 84% of the arginine and 9% of the proline of casein originated from plasma arginine. 5. In these experiments the relative specific activities of arginine, ornithine and proline in plasma are in agreement with the view that arginine is metabolized by way of ornithine to proline. The conversion of arginine into ornithine is probably catalysed by arginase, so that arginase in mammary tissue may be involved in the process of milk synthesis.  相似文献   

2.
FREE AMINO ACIDS IN DEVELOPING RAT RETINA   总被引:5,自引:4,他引:1  
—During postnatal growth the free amino acids pattern of rat retina differs at various developmental stages. The adult level for individual amino acids is reached on the 30th day of maturation. During differentiation the taurine, glutamic acid, GABA, glutamine, aspartic acid, glycine arginine, methionine and histidine levels increase while proline. alanine, ornithine and tyrosine decrease.  相似文献   

3.
Ion-exchange chromatography analysis of whole body extracts of Aedes aegypti mosquitoes which had received amino acids in their diet revealed that generally there were changes in the titre of two or more amino acids. Cysteine produced the greatest number of changes and was toxic to the insect. Of the ten amino acids provided, none resulted in the significant change in the concentration of tyrosine following a blood meal as was observed in previous studies. Evidence is presented for the conversion of arginine to ornithine and for the synthesis of arginine from glutamic acid. The data presented tend to support the hypothesis of lysine synthesis from α-ketoglutarate and for the use of proline as an energy reserve in the insect.  相似文献   

4.
Proline satisfies by a narrow margin the criterion for dietary essentially for the chick. It is estimated that the chick may synthesize 80-90% of the total proline needed for growth. Although the metabolism of arginine, ornithine and glutamic acid is expected to give rise to proline, dietary supplements to these amino acids are relatively ineffective in reducing the proline requirement of chicks. Studies of the efficacy of dietary ornithine for growth, and tracer studies using L-(5-3H)arginine indicate that the conversion of ornithine to proline in vivo is limited, and the amount of proline synthesized from arginine is but a small fraction of that needed for growth. The limiting processes in proline synthesis from glutamic acid and ornithine are not known. In Escherichia coli, where the biosynthetic pathway from glutamate to proline has been elucidated, a glutamate kinase, NADP-dependent delta1-pyrroline-5-carboxylic acid (P5C) dehydrogenase and P5C reductase catalyze proline synthesis. P5C reductase is present in the soluble fraction of chicken liver and kidney. An NADP-dependent P5C dehydrogenase activity has also been observed in this fraction of liver. Further studies are required to assess the importance of these enzymes in proline biosynthesis and to determine the limiting process in proline formation in the chicken.  相似文献   

5.
In excised pro1-1 mutant and corresponding normal type roots of Zea mays L. the uptake and interconversion of [14C]proline, [14C]glutamic acid, [14C]glutamine, and [14C]ornithine and their utilization for protein synthesis was measured with the intention of finding an explanation for the proline requirement of the mutant. Uptake of these four amino acids, with the exception of proline, was the same in mutant and normal roots, but utilization differed. Higher than normal utilization rates for proline and glutamic acid were noted in mutant roots leading to increased CO2 production, free amino acid interconversion, and protein synthesis. Proline was synthesized from either glutamic acid (or glutamine) or ornithine in both mutant and normal roots; it did not accumulate but rather was used for protein synthesis. Ornithine was not a good precursor for proline in either system, but was preferentially converted to arginine and glutamine, particularly in mutant roots. The pro1-1 mutant was thus not deficient in its ability to make proline. Based on these findings, and on the fact that ornithine, arginine, glutamic acid and aspartic acid are elevated as free amino acids in mutant roots, it is suggested that in the pro1-1 mutant proline catabolism prevails over proline synthesis.  相似文献   

6.
Escherichia coli K-12 possesses two active transport systems for arginine, two for ornithine, and two for lysine. In each case there is a low- and a high-affinity transport system. They have been characterized kinetically and by response to competitive inhibition by arginine, lysine, ornithine and other structurally related amino acids. Competitors inhibit the high-affinity systems of the three amino acids, whereas the low-affinity systems are not inhibited. On the basis of kinetic evidence and competition studies, it is concluded that there is a common high-affinity transport system for arginine, ornithine, and lysine, and three low-affinity specific ones. Repression studies have shown that arginine and ornithine repress each other's specific transport systems in addition to the repression of their own specific systems, whereas lysine represses its own specific transport system. The common transport system was found to be repressible only by lysine. A mutant was studied in which the uptake of arginine, ornithine, and lysine is reduced. The mutation was found to affect both the common and the specific transport systems.  相似文献   

7.
Cells of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 supplemented with micromolar concentrations of L-[(14)C]arginine took up, concentrated, and catabolized this amino acid. Metabolism of L-[(14)C]arginine generated a set of labeled amino acids that included argininosuccinate, citrulline, glutamate, glutamine, ornithine, and proline. Production of [(14)C]ornithine preceded that of [(14)C]citrulline, and the patterns of labeled amino acids were similar in cells incubated with L-[(14)C]ornithine, suggesting that the reaction of arginase, rendering ornithine and urea, is the main initial step in arginine catabolism. Ornithine followed two metabolic pathways: (i) conversion into citrulline, catalyzed by ornithine carbamoyltransferase, and then, with incorporation of aspartate, conversion into argininosuccinate, in a sort of urea cycle, and (ii) a sort of arginase pathway rendering glutamate (and glutamine) via Delta(1)pyrroline-5-carboxylate and proline. Consistently with the proposed metabolic scheme (i) an argF (ornithine carbamoyltransferase) insertional mutant was impaired in the production of [(14)C]citrulline from [(14)C]arginine; (ii) a proC (Delta(1)pyrroline-5-carboxylate reductase) insertional mutant was impaired in the production of [(14)C]proline, [(14)C]glutamate, and [(14)C]glutamine from [(14)C]arginine or [(14)C]ornithine; and (iii) a putA (proline oxidase) insertional mutant did not produce [(14)C]glutamate from L-[(14)C]arginine, L-[(14)C]ornithine, or L-[(14)C]proline. Mutation of two open reading frames (sll0228 and sll1077) putatively encoding proteins homologous to arginase indicated, however, that none of these proteins was responsible for the arginase activity detected in this cyanobacterium, and mutation of argD (N-acetylornithine aminotransferase) suggested that this transaminase is not important in the production of Delta(1)pyrroline-5-carboxylate from ornithine. The metabolic pathways proposed to explain [(14)C]arginine catabolism also provide a rationale for understanding how nitrogen is made available to the cell after mobilization of cyanophycin [multi-L-arginyl-poly(L-aspartic acid)], a reserve material unique to cyanobacteria.  相似文献   

8.
Impacts of arginine nutrition on embryonic and fetal development in mammals   总被引:1,自引:0,他引:1  
Embryonic loss and intrauterine growth restriction (IUGR) are significant problems in humans and other animals. Results from studies involving pigs and sheep have indicated that limited uterine capacity and placental insufficiency are major factors contributing to suboptimal reproduction in mammals. Our discovery of the unusual abundance of the arginine family of amino acids in porcine and ovine allantoic fluids during early gestation led to the novel hypothesis that arginine plays an important role in conceptus (embryo and extra-embryonic membranes) development. Arginine is metabolized to ornithine, proline, and nitric oxide, with each having important physiological functions. Nitric oxide is a vasodilator and angiogenic factor, whereas ornithine and proline are substrates for uterine and placental synthesis of polyamines that are key regulators of gene expression, protein synthesis, and angiogenesis. Additionally, arginine activates the mechanistic (mammalian) target of rapamycin cell signaling pathway to stimulate protein synthesis in the placenta, uterus, and fetus. Thus, dietary supplementation with 0.83 % l-arginine to gilts consuming 2 kg of a typical gestation diet between either days 14 and 28 or between days 30 and 114 of pregnancy increases the number of live-born piglets and litter birth weight. Similar results have been reported for gestating rats and ewes. In sheep, arginine also stimulates development of fetal brown adipose tissue. Furthermore, oral administration of arginine to women with IUGR has been reported to enhance fetal growth. Collectively, enhancement of uterine as well as placental growth and function through dietary arginine supplementation provides an effective solution to improving embryonic and fetal survival and growth.  相似文献   

9.
The storage and remobilization of nitrogen in deciduous and evergreen species is a major source of N, supporting the seasonal growth of trees. In evergreens, in addition to wood and roots, older leaves are important reservoirs of N used in the growth of new foliage. Just before bud burst, when transpiration is inactive or low, and when uptake of nitrogen by the roots may be restricted due to low temperatures, levels of organic N in the xylem are high. Amino acids usually comprise the bulk of this organic N. Changes in amino acid concentrations in early spring are thought to result mainly from hydrolysis of N reserves, and not from current N uptake. The seasonal profiles of amino acids in the xylem sap of Quercus ilex, an evergreen Mediterranean tree, were investigated. The first amino acid detected in the xylem sap before spring was ornithine, which may result from the breakdown of arginine present in storage proteins. Arginine is one of the main amino acids present in storage proteins because each arginine molecule has four nitrogen atoms. When protein degradation increases the free arginine pool, the arginase activity is enhanced and, consequently, the conversion of arginine to ornithine. It seems that ornithine has an important role in N transport early in the growth season of Q. ilex.  相似文献   

10.
The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and γ-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra × maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and γ-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.  相似文献   

11.
Polyamine synthesis from proline in the developing porcine placenta   总被引:1,自引:0,他引:1  
Polyamines (putrescine, spermidine, and spermine) are essential for placental growth and angiogenesis. However, little is known about polyamine synthesis in the porcine placenta during conceptus development. The present study was conducted to test the hypothesis that arginine and proline are the major sources of ornithine for placental polyamine production in pigs. Placentae, amniotic fluid, and allantoic fluid were obtained from gilts on Days 20, 30, 35, 40, 45, 50, 60, 90, and 110 of the 114-day gestation (n = 6 per day). Placentae as well as amniotic and allantoic fluids were analyzed for arginase, proline oxidase, ornithine aminotransferase (OAT), ornithine decarboxylase (ODC), proline transport, concentrations of amino acids and polyamines, and polyamine synthesis using established radiochemical and chromatographic methods. Neither arginase activity nor conversion of arginine into polyamines was detected in the porcine placenta. In contrast, both proline and ornithine were converted into putrescine, spermidine, and spermine in placental tissue throughout pregnancy. The activities of proline oxidase, OAT, and ODC as well as proline transport, polyamine synthesis from proline, and polyamine concentrations increased markedly between Days 20 and 40 of gestation, declined between Days 40 and 90 of gestation, and remained at the reduced level through Day 110 of gestation. Proline oxidase and OAT, but not arginase, were present in allantoic and amniotic fluids for the production of ornithine (the immediate substrate for polyamine synthesis). The activities of these two enzymes as well as the concentrations of ornithine and total polyamines in fetal fluids were highest at Day 40 but lowest at Days 20, 90, and 110 of gestation. These results indicate that proline is the major amino acid for polyamine synthesis in the porcine placenta and that the activity of this synthetic pathway is maximal during early pregnancy, when placental growth is most rapid. Our novel findings provide a new base of information for future studies to define the role of proline in fetoplacental growth and development.  相似文献   

12.
Arginine catabolism by Treponema denticola.   总被引:14,自引:2,他引:12       下载免费PDF全文
Treponema denticola, an anaerobe commonly present in the human mouth, ferments various amino acids and glucose. Amino acid analyses indicated that substrate amounts of arginine were utilized by T. denticola growing in a complex, serum-containing medium. Cell suspensions metabolized L-arginine to citrulline, NH3, CO2, proline, and small amounts of ornithine. CO2, NH3, ornithine, and proline were produced from L-citrulline by cell suspensions. Determinations of radioactivity in products formed from L-[U-14C]ornithine indicated that cell suspensions converted this amino acid to proline. Furthermore, proline was excreted by cells growing in a complex, arginine-containing medium. Arginine iminohydrolase (deiminase) and ornithine carbamoyltransferase activities were detected in T. denticola cell extracts. Carbamoylphosphate dissimilation by extracts yielded adenosine triphosphate. The data indicate that T. denticola derives energy by dissimilating L-argine via the arginine iminohydrolase pathway. However, unlike some of the other bacteria that utilize this pathway, T. denticola converts to proline much of the ornithine derived from L-arginine.  相似文献   

13.
The amino acid composition of lung, serum and liver in silicotic rats was studied in order to assess the availability of precursors in lung for fibrogenesis. It was observed that the pool of ornithine, arginine, alanine, leucine, valine, glutamic acid, lysine, proline and glycine underwent marked alterations. Free arginine, proline and leucine were only detectable in silicotic lung, while free glycine, glutamic acid and glutamine pools decreased significantly in liver. Changes in amino acid metabolism as a result of silicosis are discussed.  相似文献   

14.
Metabolism of arginine in lactating rat mammary gland.   总被引:3,自引:1,他引:2       下载免费PDF全文
Significant activities of the four enzymes needed to convert arginine into proline and glutamate (arginase, ornithine aminotransferase, pyrroline-5-carboxylate reductase and pyrroline-5-carboxylate dehydrogenase) develop co-ordinately in lactating rat mammary glands in proportion to the increased production of milk. No enzymes were detected to carry out the reactions of proline oxidation or reduction of glutamate to pyrroline-5-carboxylate. Minces of the gland converted ornithine into proline and into glutamate plus glutamine. These conversions increased during the cycle of lactation in proportion to the increased milk production and to the content of the necessary enzymes. The minced gland did not convert labelled ornithine into citrulline, confirming the absence from the gland of a functioning urea cycle, and did not convert labelled proline or glutamate into ornithine. A metabolic flow of labelled arginine to proline and glutamate in mammary gland was confirmed in intact animals with experiments during which the specific radioactivity of proline in plasma remained below that of the proline being formed from labelled arginine within the gland. It was concluded that arginase in this tissue had a metabolic role in the biosynthesis of extra proline and glutamate needed for synthesis of milk proteins.  相似文献   

15.
We have previously shown that arginine deficiency is exacerbated by the removal of dietary proline in orally, but not parenterally, fed piglets. Therefore, we hypothesized that the net interconversions of proline, ornithine, and arginine primarily occur in the small intestine of neonatal piglets. Ten intragastrically fed piglets received either intraportal (IP) or intragastric (IG) primed, constant infusions of [guanido-(14)C]arginine and [U-(14)C]ornithine + [2,3-(3)H]proline. By infusing amino acid isotopes via the stomach compared with the portal vein, we isolated small intestinal first-pass metabolism in vivo. During IP infusion, fractional net conversions (%) from proline to ornithine (0), ornithine to arginine (11 +/- 6), and ornithine to proline (5 +/- 1) were lower (P < 0.05) than during IG infusion (39 +/- 8, 18 +/- 6, and 42 +/- 12, respectively); we speculate that these data are due to the localization of ornithine aminotransferase to the gut. The balance of these conversions indicated a large synthesis of arginine (70.0 micromol. kg(-1). h(-1)) by the gut, with a corresponding degradation of ornithine (70.8 micromol. kg(-1). h(-1)) and no change in proline balance. Gut synthesis of arginine from proline (48.1 micromol. kg(-1). h(-1)) was 50% of its requirement, whereas proline synthesis from arginine (33.0 micromol. kg(-1). h(-1)) amounted to 10% of its requirement. Overall, arginine synthesis is more dependent on the gut than proline synthesis. In situations in which gut metabolism is compromised, such as during parenteral nutrition or gastrointestinal disease, arginine and proline are individually indispensable because their biosyntheses are negligible.  相似文献   

16.
1. Arteriovenous differences of plasma free amino acids across the lactating mammary glands of six goats have been measured. 2. In four experiments, measurements of blood flow, amino acid arteriovenous differences, milk yield and milk nitrogen showed that the uptake of nitrogen in the form of amino acids was sufficient to provide all the nitrogen of the milk proteins synthesized in the mammary gland. 3. In the same four experiments the uptake from the plasma and output into the milk of individual amino acids per unit time were compared. The uptakes of essential amino acids and glutamic acid were approximately equal to the corresponding output figures. The uptake of serine was consistently less than the output, and the uptake of other non-essential amino acids was very variable, in some experiments being approximately equal to the output figures and in others being considerably less. 4. As in cows, there was an uptake of ornithine in all experiments, though ornithine is absent from milk. In goats, though not in cows, the uptake of arginine was consistently greatly in excess of the requirement for arginine residues in milk protein. 5. The possible significance of the uptakes of arginine and ornithine for the synthesis of serine and other non-essential amino acids in the mammary gland is discussed. 6. The importance of clamping the external pudic vein, when sampling mammary venous blood from the caudal superficial epigastric vein, is indicated.  相似文献   

17.
18.
The role of the δ-ornithine amino transferase (OAT) pathway in proline synthesis is still controversial and was assessed in leaves of cashew plants subjected to salinity. The activities of enzymes and the concentrations of metabolites involved in proline synthesis were examined in parallel with the capacity of exogenous ornithine and glutamate to induce proline accumulation. Proline accumulation was best correlated with OAT activity, which increased 4-fold and was paralleled by NADH oxidation coupled to the activities of OAT and Δ1-pyrroline-5-carboxylate reductase (P5CR), demonstrating the potential of proline synthesis via OAT/P5C. Overall, the activities of GS, GOGAT and aminating GDH remained practically unchanged under salinity. The activity of P5CR did not respond to NaCl whereas Δ1-pyrroline-5-carboxylate dehydrogenase was sharply repressed by salinity. We suggest that if the export of P5C from the mitochondria to the cytosol is possible, its subsequent conversion to proline by P5CR may be important. In a time-course experiment, proline accumulation was associated with disturbances in amino acid metabolism as indicated by large increases in the concentrations of ammonia, free amino acids, glutamine, arginine and ornithine. Conversely, glutamate concentrations increased moderately and only within the first 24 h. Exogenous feeding of ornithine as a precursor was very effective in inducing proline accumulation in intact plants and leaf discs, in which proline concentrations were several times higher than glutamate-fed or salt-treated plants. Our data suggest that proline accumulation might be a consequence of salt-induced increase in N recycling, resulting in increased levels of ornithine and other metabolites involved with proline synthesis and OAT activity. Under these metabolic circumstances the OAT pathway might contribute significantly to proline accumulation in salt-stressed cashew leaves.  相似文献   

19.
Chlorella saccharophila can utilize the amino acids arginine, glutamate. ornithine and proline as sole sources of nitrogen for growth. By comparison C. autotrophica utilized only arginine and ornithine. Following osmotic shock of Chlorella autotrophica from 50 to 150% artificial seawater rapid synthesis of proline (the main osmoregulatory solute in this alga) occurred in cells grown on arginine or citrulline. However, little proline synthesis occurred in ornithine-grown cells. Distribution of radiolabelled carbon from [14C]-arginine assimilation following osmotic shock of C. autotrophica agrees with the following pathway of arginine utilization: arginine→citrulline→ornithine→glutamate semialdehyde→pyrroline-5-carboxylate→proline. These 4 steps are catalysed by arginine deiminase (EC 3.5.3.6), citrullinase (EC 3.5.1.20), ornithine transaminase (EC 2.6.1.13) and pyrroline-5-carboxylate reductase (EC 1.5.1.2), respectively. Of these 4 enzymes, only arginine deiminase and pyrroline-5-carboxylate reductase were detected in the crude extract of the 2 Chlorella species. Arginine deiminase did not require specific cations for optimal activity. The deimi-nase showed maximal activity at pH 8.0 and followed Michaelis-Menten kinetics with an apparent Km for L-arginine of 0.085 m M for the C. autotrophica enzyme and 0.097 m M for that of C. saccharophila. The activity of arginine deiminase was not influen-ced by growing C. saccharophila on arginine. Ornithine competitively inhibited arginine deiminase with an apparent K, of 2.4 m M for the C. autotrophica enzyme, and 3.8 m M for that of C. saccharophila . Arginine utilization by Chlorella is discussed in relation to that of other organisms.  相似文献   

20.
The effect of proline, isoleucine, leucine, valine, lysine and ornithine under standard physiological conditions, on purified Vigna catjang cotyledon and buffalo liver arginases was studied. The results showed that V. catjang cotyledon arginase is inhibited by proline at a lower concentration than buffalo liver arginase and the inhibition was found to be linear competitive for both enzymes. Buffalo liver arginase was more sensitive to inhibition by branched-chain amino acids than V. catjang cotyledon. Leucine, lysine, ornithine and valine are competitive inhibitors while isoleucine is a mixed type of inhibitor of liver arginase. We have also studied the effect of manganese concentration which acts as a cofactor and leads to activation of arginase. The optimum Mn2+ concentration for Vigna catjang cotyledon arginase is 0.6 mM and liver arginase is 2.0 mM. The preincubation period required for liver arginase is 20 min at 55 degrees C, the preincubation period and temperature required for activation of cotyledon arginase was found to be 8 min at 35 degrees C. The function of cotyledon arginase in polyamine biosynthesis and a possible role of branched chain amino acids in hydrolysis of arginine in liver are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号