首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have revealed that a cilium-generated liquid flow in the node has a crucial role in the establishment of the left-right (LR) axis in the mouse. In fish, Kupffer's vesicle (KV), a teleost-specific spherical organ attached to the tail region, is known to have an equivalent role to the mouse node during LR axis formation. However, at present, there has been no report of an asymmetric gene expressed in KV under the control of fluid flow. Here we report the earliest asymmetric gene in teleost KV, medaka charon, and its regulation. Charon is a member of the Cerberus/DAN family of proteins, first identified in zebrafish. Although zebrafish charon was reported to be symmetrically expressed in KV, medaka charon displays asymmetric expression with more intense expression on the right side. This asymmetric expression was found to be regulated by KV flow because symmetric and up-regulated charon expression was observed in flow-defective embryos with immotile cilia or disrupted KV. Taken together, medaka charon is a reliable gene marker for LR asymmetry in KV and thus, will be useful for the analysis of the early steps downstream of the fluid flow.  相似文献   

2.
3.
4.
5.
The vertebrate body plan features a consistent left-right (LR) asymmetry of internal organs. In several vertebrate embryos, motile cilia generate an asymmetric fluid flow that is necessary for normal LR development. However, the mechanisms involved in orienting LR asymmetric flow with previously established anteroposterior (AP) and dorsoventral (DV) axes remain poorly understood. In zebrafish, asymmetric flow is generated in Kupffer's vesicle (KV). The cellular architecture of KV is asymmetric along the AP axis, with more ciliated cells densely packed into the anterior region. Here, we identify a Rho kinase gene, rock2b, which is required for normal AP patterning of KV and subsequent LR development in the embryo. Antisense depletion of rock2b in the whole embryo or specifically in the KV cell lineage perturbed asymmetric gene expression in lateral plate mesoderm and disrupted organ LR asymmetries. Analyses of KV architecture demonstrated that rock2b knockdown altered the AP placement of ciliated cells without affecting cilia number or length. In control embryos, leftward flow across the anterior pole of KV was stronger than rightward flow at the posterior end, correlating with the normal AP asymmetric distribution of ciliated cells. By contrast, rock2b knockdown embryos with AP patterning defects in KV exhibited randomized flow direction and equal flow velocities in the anterior and posterior regions. Live imaging of Tg(dusp6:memGFP)(pt19) transgenic embryos that express GFP in KV cells revealed that rock2b regulates KV cell morphology. Our results suggest a link between AP patterning of the ciliated Kupffer's vesicle and LR patterning of the zebrafish embryo.  相似文献   

6.
Vertebrate body plans have a conserved left-right (LR) asymmetry manifested in the position and anatomy of the heart, visceral organs, and brain. Recent studies have suggested that LR asymmetry is established by asymmetric Ca2+ signaling resulting from cilia-driven flow of extracellular fluid across the node. We report here that inositol 1,3,4,5,6-pentakisphosphate 2-kinase (Ipk1), which generates inositol hexakisphosphate, is critical for normal LR axis determination in zebrafish. Zebrafish embryos express ipk1 symmetrically during gastrulation and early segmentation. ipk1 knockdown by antisense morpholino oligonucleotide injection randomized LR-specific gene expression and organ placement, effects that were associated with reduced intracellular Ca2+ flux in cells surrounding the ciliated Kupffer's vesicle, a structure analogous to the mouse node. Our data suggest that the pathway for inositol hexakisphosphate production is a key regulator of asymmetric Ca(2+) flux during LR specification.  相似文献   

7.
The invariant asymmetric placement of thoracic and abdominal organs in the vertebrates is controlled by the left-asymmetric activity of the Nodal signaling cascade during embryogenesis. In the mouse embryo asymmetric induction of nodal is thought to be dependent on functional monocilia on the ventral node cells and on the Pkd2 gene, which encodes the calcium channel polycystin-2 (PC2). In humans mutations in PKD2 and PKD1 give rise to polycystic kidney disease. The PC1 and PC2 proteins are thought to function as part of a multifactorial complex. Localization of both proteins to the primary renal cilium suggested a function on cilia of the ventral node. Here we investigated Pkd1 knock-out embryos for laterality defects and found wild-type organ morphogenesis and normal expression of nodal and Pitx2. While PC2 localized to nodal cilia, no ciliary localization of PC1 was detected in mouse embryos. This finding was confirmed in an archetypical mammalian blastodisc, the rabbit embryo. Thus, absence of PC1 localization to cilia corresponded with a lack of laterality defects in Pkd1 knock-out embryos. Our results demonstrate a PC1-independent function of PC2 in left-right axis formation, and indirectly support a ciliary role of PC2 in this process.  相似文献   

8.
In zebrafish embryos, bilateral symmetry is broken by asymmetric nodal flow generated in Kupffer’s vesicle (KV), the transient cilia-rich organ, analogous to the mouse node. Asymmetric nodal flow induces the asymmetric expression of several genes, which are critical for the determination of correct LR body patterning. seson encoding three consecutive C2H2 zinc finger protein is predominantly expressed in the cilia-rich organs including KV. Inhibition of its function by the injection of a seson-specific MO inhibited the left-side biased expression of spaw, and resulted in randomization of the heart, gut looping and brain laterality. Disruption of the LR patterning in seson morphants appeared to be due to severe cilia defects in KV. Seson function was also required for ciliogenesis in other tissues such as the pronephros and olfactory organs. Collectively, our data suggest that Seson has critical roles in ciliogenesis and LR body axis patterning.  相似文献   

9.
The micromeres (Mics) lineage functions as a morphogenetic signaling center in early embryos of sea urchins. The Mics lineage releases signals that regulate the specification of cell fates along the animal-vegetal and oral-aboral axes. We tested whether the Mics lineage might also be responsible for differentiation of the left-right (LR) axis by observing of the placement of the adult rudiment, which normally forms only on the left side of the larvae, after removal of the Mics lineage. When all of the Mics lineage were removed from embryos of the regular sea urchin Hemicentrotus pulcherrimus between the 16- and 64-cell stages, the LR placement of the rudiment became randomized. However, the immediate retransplantation of the Mics rescued the normal LR placement of the rudiment, indicating that the Mics lineage releases a signal that specifies LR polarity. Additionally, we investigated whether the specification of LR polarity of whole embryos in the indirect-developing sea urchin H. pulcherrimus is affected by LiCl exposure, which disturbs the establishment of LR asymmetry in a direct-developing sea urchin. Larvae derived from normal animal caps combined with LiCl-exposed Mics descendants were defective in normal LR placement of the rudiment, suggesting that LiCl interferes with the Mics-derived signal. In contrast, embryos of two sand dollar species (Scaphechinus mirabilis and Astriclypeus manni) were resistant to alteration of LR placement of the rudiment by either removal of the Mics lineage or LiCl exposure. These results indicate that the Mics lineage is involved in specification of LR polarity in the regular sea urchin H. pulcherrimus, and suggest that LiCl impairs the normal LR patterning by affecting Mics-derived signaling.  相似文献   

10.
A conserved molecular cascade involving Nodal signaling that patterns the laterality of the lateral mesoderm in vertebrates has been extensively studied, but processes involved in the initial break of left-right (LR) symmetry are just beginning to be explored. Here we report that Na,K-ATPase alpha2 and Ncx4a function upstream of Nodal signaling to regulate LR patterning in zebrafish. Knocking down Na,K-ATPase alpha2 and Ncx4a activity in dorsal forerunner cells (DFCs), which are precursors of Kupffer's vesicle (KV), is sufficient to disrupt asymmetric gene expression in the lateral plate mesoderm and randomize the placement of internal organs, indicating that the activity of Na,K-ATPase alpha2 and Ncx4a in DFCs/KV is crucial for LR patterning. High-speed videomicroscopy and bead implantation experiments show that KV cilia are immobile and the directional fluid flow in KV is abolished in Na,K-ATPase alpha2 and Ncx4a morphants, suggesting their essential role in KV ciliary function. Furthermore, we found that intracellular Ca(2+) levels are elevated in Na,K-ATPase alpha2 and Ncx4a morphants and that the defects in ciliary motility, KV fluid flow and placement of internal organs induced by their knockdown could be suppressed by inhibiting the activity of Ca(2+)/calmodulin-dependent protein kinase II. Together, our data demonstrate that Na,K-ATPase alpha2 and Ncx4a regulate LR patterning by modulating intracellular calcium levels in KV and by influencing cilia function, revealing a previously unrecognized role for calcium signaling in LR patterning.  相似文献   

11.
Left-right asymmetry of internal organs is widely distributed in the animal kingdom. The chick and mouse embryos have served as important model organisms to analyze the mechanisms underlying the establishment of the left-right axis. In the chick embryo many genes have been found to be asymmetrically expressed in and around the node, while the same genes in the mouse show symmetric expression patterns. In the mouse there is strong evidence for an establishment of left-right asymmetry through nodal cilia. In contrast, in the chick and in many other organisms left-right asymmetry is probably generated by an early-acting event involving membrane depolarization. In both birds and mammals a conserved Nodal-Lefty-Pitx2 module exists that controls many aspects of asymmetric morphogenesis. This review also gives examples of divergent mechanisms of establishing asymmetric organ formation. Thus there is ample evidence for conserved and non-conserved strategies to generate asymmetry in birds and mammals.  相似文献   

12.
Specification of the left-right axis during embryonic development is critical for the morphogenesis of asymmetric organs such as the heart, lungs, and stomach. The first known left-right asymmetry to occur in the mouse embryo is a leftward fluid flow in the node that is created by rotating cilia on the node surface. This flow is followed by asymmetric expression of Nodal and its inhibitor Cerl2 in the node. Defects in cilia and/or fluid flow in the node lead to defective Nodal and Cerl2 expression and therefore incorrect visceral organ situs. Here we show the cilia protein Arl13b is required for left right axis specification as its absence results in heterotaxia. We find the defect originates in the node where Cerl2 is not downregulated and asymmetric expression of Nodal is not maintained resulting in symmetric expression of both genes. Subsequently, Nodal expression is delayed in the lateral plate mesoderm (LPM). Symmetric Nodal and Cerl2 in the node could result from defects in either the generation and/ or the detection of Nodal flow, which would account for the subsequent defects in the LPM and organ positioning.  相似文献   

13.
Cilia and flagella are highly conserved organelles that have diverse motility and sensory functions. Motility defects in cilia and flagella result in primary ciliary dyskinesia (PCD). We isolated a novel medaka PCD mutant, jaodori (joi). Positional cloning showed that axonemal dynein intermediate chain 2 (dnai2) is responsible for joi. The joi mutation was caused by genomic insertion of the medaka transposon, Tol1. In the joi mutant, cilia in Kupffer's vesicle (KV), an organ functionally equivalent to the mouse node in terms of left-right (LR) specification, are generated but their motility is disrupted, resulting in a LR defect. Ultrastructural analysis revealed severe reduction in the outer dynein arms in KV cilia of joi mutants. We also found the other dnai2 gene in the medaka genome. These two dnai2 genes function either redundantly or distinctly in tissues possessing motile cilia.  相似文献   

14.
15.
16.
In Xenopus, several TGF betas, including nodal-related 1 (Xnr1), derriere, and chimeric forms of Vg1, elicit cardiac and visceral organ left-right (LR) defects when ectopically targeted to right mesendoderm cell lineages, suggesting that LR axis determination may require activity of one or more TGF betas. However, it is not known which, if any, of these ligands is required for LR axis determination, nor is it known which type I TGF beta receptor(s) are involved in mediating left-side TGF beta signaling. We report here that similar to effects of ectopic TGF betas, right-side expression of constitutively active activin-like kinase (ALK) 4 results in LR organ reversals as well as altered Pitx2 expression in the lateral plate mesoderm. Moreover, left-side expression of a kinase-deficient, dominant-negative ALK4 (DN-ALK4) or an ALK4 antisense morpholino also results in abnormal embryonic body situs, demonstrating a left-side requirement for ALK4 signaling. To determine which TGF beta(s) utilize the ALK4 pathway to mediate LR development, biochemical and functional assays were performed using an Activin-Vg1 chimera (AVg), Xnr1, and derriere. Whereas ALK4 can co-immunoprecipitate all of these TGF betas, including endogenous Vg1 protein from embryo homogenates, functional assays demonstrate that not all of these ligands require an intact ALK4 signaling pathway to modulate LR asymmetry. When AVg and DN-ALK4 are co-expressed, LR defects otherwise induced by AVg alone are attenuated by DN-ALK4; however, when functional assays are performed with Xnr1 or derriere, LR defects otherwise elicited by these ligands alone still occur in the presence of DN-ALK4. Intriguingly, when any of these TGF betas is expressed at a higher concentration to elicit primary axis defects, DN-ALK4 blocks gastrulation and dorsoanterior/ventroposterior defects that otherwise occur following ligand-only expression. Together, these results suggest not only that ALK4 interacts with multiple TGF betas to generate embryonic pattern, but also that ALK4 ligands differentially utilize the ALK4 pathway to regulate distinct aspects of axial pattern, with Vg1 as a modulator of ALK4 function in LR axis determination and Vg1, Xnr1, and derriere as modulators of ALK4 function in mesoderm induction during primary axis formation.  相似文献   

17.
The alignment of the left-right (LR) body axis relative to the anteroposterior (AP) and dorsoventral (DV) axes is central to the organization of the vertebrate body plan and is controlled by the node/organizer. Somitogenesis plays a key role in embryo morphogenesis as a principal component of AP elongation. How morphogenesis is coupled to axis specification is not well understood. We demonstrate that Wnt3a is required for LR asymmetry. Wnt3a activates the Delta/Notch pathway to regulate perinodal expression of the left determinant Nodal, while simultaneously controlling the segmentation clock and the molecular oscillations of the Wnt/beta-catenin and Notch pathways. We provide evidence that Wnt3a, expressed in the primitive streak and dorsal posterior node, acts as a long-range signaling molecule, directly regulating target gene expression throughout the node and presomitic mesoderm. Wnt3a may also modulate the symmetry-breaking activity of mechanosensory cilia in the node. Thus, Wnt3a links the segmentation clock and AP axis elongation with key left-determining events, suggesting that Wnt3a is an integral component of the trunk organizer.  相似文献   

18.
19.
20.
In the early mouse embryo monocilia on the ventral node rotate to generate a leftward flow of fluid. This nodal flow is essential for the left-sided expression of nodal and pitx2, and for subsequent asymmetric organ patterning. Equivalent left fluid flow has been identified in other vertebrates, including Xenopus and zebrafish, indicating it is an ancient vertebrate mechanism. Asymmetric nodal and Pitx expression have also been identified in several invertebrates, including the vertebrates' nearest relatives, the urochordates. However whether cilia regulate this asymmetric gene expression remains unknown, and previous studies in urochordates have not identified any cilia prior to the larval stage, when asymmetry is already long established. Here we use Scanning and Transmission Electron Microscopy and immunofluorescence to investigate cilia in the urochordate Ciona intestinalis. We show that single cilia are transiently present on each ectoderm cell of the late neurula/early tailbud stage embryo, a time point just before onset of asymmetric nodal expression. Mapping the position of each cilium on these cells shows they are posteriorly positioned, something also described for mouse node cilia. The C. intestinalis cilia have a 9+0 ring ultrastructure, however we find no evidence of structures associated with motility such as dynein arms, radial spokes or nexin. Furthermore the 9+0 ring structure becomes disorganised immediately after the cilia have exited the cell, indicative of cilia which are not capable of motility. Our results indicate that although cilia are present prior to molecular asymmetries, they are not motile and hence cannot be operating in the same way as the flow-generating cilia of the vertebrate node. We conclude that the cilia may have a role in the development of C. intestinalis left-right asymmetry but that this would have to be in a sensory capacity, perhaps as mechanosensors as hypothesised in two-cilia physical models of vertebrate cilia-driven asymmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号