首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 761 毫秒
1.
CKD (chronic kidney disease) is a life-threatening pathology, often requiring HD (haemodialysis) and characterized by high OS (oxidative stress), inflammation and perturbation of vascular endothelium. HD patients have increased levels of vWF (von Willebrand factor), a large protein (~240?kDa) released as UL-vWF (ultra large-vWF polymers, molecular mass ~20000-50000?kDa) from vascular endothelial cells and megakaryocytes, and responsible for the initiation of primary haemostasis. The pro-haemostatic potential of vWF increases with its length, which is proteolytically regulated by ADAMTS-13 (a disintegrin and metalloproteinase with thrombospondin motifs 13), a zinc-protease cleaving vWF at the single Tyr1605-Met1606 bond, and by LSPs (leucocyte serine proteases), released by activated PMNs (polymorphonuclear cells) during bacterial infections. Previous studies have shown that in vitro oxidation of Met1606 hinders vWF cleavage by ADAMTS-13, resulting in the accumulation of UL-vWF that are not only more pro-thrombotic than shorter vWF oligomers, but also more efficient in binding to bacterial adhesins during sepsis. Notably, HD patients have increased risk of developing dramatic cardiovascular and septic complications, whose underlying mechanisms are largely unknown. In the present study, we first purified vWF from HD patients and then chemically characterized its oxidative state. Interestingly, HD-vWF contains high carbonyl levels and increased proportion of UL-vWF polymers that are also more resistant to ADAMTS-13. Using TMS (targeted MS) techniques, we estimated that HD-vWF contains >10% of Met1606 in the sulfoxide form. We conclude that oxidation of Met1606, impairing ADAMTS-13 cleavage, results in the accumulation of UL-vWF polymers, which recruit and activate platelets more efficiently and bind more tightly to bacterial adhesins, thus contributing to the development of thrombotic and septic complications in CKD.  相似文献   

2.
ADAMTS13 consists of a reprolysin-type metalloprotease domain followed by a disintegrin domain, a thrombospondin type 1 motif (TSP1), Cys-rich and spacer domains, seven more TSP1 motifs, and two CUB domains. ADAMTS13 limits platelet accumulation in microvascular thrombi by cleaving the Tyr1605-Met1606 bond in von Willebrand factor, and ADAMTS13 deficiency causes a lethal syndrome, thrombotic thrombocytopenic purpura. ADAMTS13 domains required for substrate recognition were localized by the characterization of recombinant deletion mutants. Constructs with C-terminal His6 and V5 epitopes were expressed by transient transfection of COS-7 cells or in a baculovirus system. No association with extracellular matrix or cell surface was detected for any ADAMTS13 variant by immunofluorescence microscopy or chemical modification. Both plasma and recombinant full-length ADAMTS13 cleaved von Willebrand factor subunits into two fragments of 176 kDa and 140 kDa. Recombinant ADAMTS13 was divalent metal ion-dependent and was inhibited by IgG from a patient with idiopathic thrombotic thrombocytopenic purpura. ADAMTS13 that was truncated after the metalloprotease domain, the disintegrin domain, the first TSP1 repeat, or the Cys-rich domain was not able to cleave von Willebrand factor, whereas addition of the spacer region restored protease activity. Therefore, the spacer region is necessary for normal ADAMTS13 activity toward von Willebrand factor, and the more C-terminal TSP1 and CUB domains are dispensable in vitro.  相似文献   

3.
ADAMTS proteases typically employ some combination of ancillary C-terminal disintegrin-like, thrombospondin-1, cysteine-rich, and spacer domains to bind substrates and facilitate proteolysis by an N-terminal metalloprotease domain. We constructed chimeric proteases and substrates to examine the role of C-terminal domains of ADAMTS13 and ADAMTS5 in the recognition of their physiological cleavage sites in von Willebrand factor (VWF) and aggrecan, respectively. ADAMTS5 cleaves Glu(373)-Ala(374) and Glu(1480)-Gly(1481) bonds in bovine aggrecan but does not cleave VWF. Conversely, ADAMTS13 cleaves the Tyr(1605)-Met(1606) bond of VWF, which is exposed by fluid shear stress but cannot cleave aggrecan. Replacing the thrombospondin-1/cysteine-rich/spacer domains of ADAMTS5 with those of ADAMTS13 conferred the ability to cleave the Glu(1615)-Ile(1616) bond of VWF domain A2 in peptide substrates or VWF multimers that had been sheared; native (unsheared) VWF multimers were resistant. Thus, by recombining exosites, we engineered ADAMTS5 to cleave a new bond in VWF, preserving physiological regulation by fluid shear stress. The results demonstrate that noncatalytic thrombospondin-1/cysteine-rich/spacer domains are principal modifiers of substrate recognition and cleavage by both ADAMTS5 and ADAMTS13. Noncatalytic domains may perform similar functions in other ADAMTS family members.  相似文献   

4.
ADAMTS13 limits platelet-rich thrombosis by cleaving von Willebrand factor at the Tyr(1605)-Met(1606) bond. Previous studies showed that ADAMTS13 truncated after spacer domain remains proteolytically active or hyperactive. However, the relative contribution of each domain within the proximal carboxyl terminus of ADAMTS13 in substrate recognition and specificity is not known. We showed that a metalloprotease domain alone was unable to cleave the Tyr-Met bond of glutathione S-transferase (GST)-VWF73-H substrate in 3 h, but it did cleave the substrate at a site other than the Tyr-Met bond after 16-24 h of incubation. Remarkably, the addition of even one or several proximal carboxyl-terminal domains of ADAMTS13 restored substrate specificity. Full proteolytic activity, however, was not achieved until all of the proximal carboxyl-terminal domains were added. The addition of TSP1 2-8 repeats and two CUB domains did not further increase proteolytic activity. Furthermore, ADAMTS13 truncated after the spacer domain with or without metalloprotease domain bound GST-VWF73-H with a K(d) of approximately 7.0 or 13 nm, comparable with full-length ADAMTS13 (K(d) = 4.6 nm). Metalloprotease domain did not bind GST-VWF73-H detectably, but the disintegrin domain, first TSP1 repeat, Cys-rich domain, and spacer domain bound GST-VWF73-H with K(d) values of 489, 136, 121, and 108 nm, respectively. These proximal carboxyl-terminal domains dose-dependently inhibited cleavage of fluorescent resonance energy transfer (FRETS)-VWF73 by full-length ADAMTS13 and ADAMTS13 truncated after the spacer domain. These data demonstrated that the proximal carboxyl-terminal domains of ADAMTS13 determine substrate specificity and are all required for recognition and cleavage of von Willebrand factor between amino acid residues Asp(1595) and Arg(1668).  相似文献   

5.
ADAMTS13 controls the multimeric size of circulating von Willebrand factor (VWF) by cleaving the Tyr1605-Met1606 bond in theA2 domain. To examine substrate recognition, we expressed in bacteria and purified three A2 (VWF76-(1593-1668), VWF115-(1554-1668), VWFA2-(1473-1668)) and one A2-A3 (VWF115-A3-(1554-1874)) domain fragments. Using high pressure liquid chromatography analysis, the initial rates of VWF115 cleavage by ADAMTS13 at different substrate concentrations were determined, and from this the kinetic constants were derived (Km 1.61 microM; kcat 0.14 s(-1)), from which the specificity constant kcat/Km was calculated, 8.70 x 10(4) m(-1) s(-1). Similar values of the specificity constant were obtained for VWF76 and VWF115-A3. To identify residues important for recognition and proteolysis of VWF115, we introduced certain type 2A von Willebrand disease mutations by site-directed mutagenesis. Although most were cleaved normally, one (D1614G) was cleaved approximately 8-fold slower. Mutagenesis of additional charged residues predicted to be in close proximity to Asp1614 on the surface of the A2 domain (R1583A, D1587A, D1614A, E1615A, K1617A, E1638A, E1640A) revealed up to 13-fold reduction in kcat/Km for D1587A, D1614A, E1615A, and K1617A mutants. When introduced into the intact VWFA2 domain, proteolysis of the D1587A, D1614A, and E1615A mutants was also slowed, particularly in the presence of urea. Surface plasmon resonance demonstrated appreciable reduction in binding affinity between ADAMTS13 and VWF115 mutants (KD up to approximately 1.3 microM), compared with VWF115 (KD 20 nM). These results demonstrate an important role for Asp1614 and surrounding charged residues in the binding and cleavage of the VWFA2 domain by ADAMTS13.  相似文献   

6.
A homology model for the A2 domain of von Willebrand factor (VWF) is presented. A large number of target–template alignments were combined into a consensus alignment and used for constructing the model from the structures of six template proteins. Molecular dynamics simulation was used to study the structural and dynamic effects of eight mutations introduced into the model, all associated with type 2A von Willebrand disease. It was found that the group I mutations G1505R, L1540P and S1506L cause significant deviations over multiple regions of the protein, coupled to significant thermal fluctuations for G1505R and L1540P. This suggests that protein instability may be responsible for their intracellular retention. The group II mutations R1597W, E1638K and G1505E caused single loop displacements near the physiologic VWF proteolysis site between Y1605–M1606. These modest structural changes may affect interactions between VWF and the ADAMTS13 protease. The group II mutations I1628T and L1503Q caused no significant structural change in the protein, suggesting that inclusion of the protease in this model is necessary for understanding their effect.Figure Homology model of the von Willebrand factor A2 domainElectronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00894-004-0194-9  相似文献   

7.
Shiga toxin (Stx) produced by enterohemorrhagic Escherichia coli causes diarrhea-associated hemolytic-uremic syndrome (DHUS), a severe renal thrombotic microangiopathy. We investigated the interaction between Stx and von Willebrand Factor (VWF), a multimeric plasma glycoprotein that mediates platelet adhesion, activation, and aggregation. Stx bound to ultra-large VWF (ULVWF) secreted from and anchored to stimulated human umbilical vein endothelial cells, as well as to immobilized VWF-rich human umbilical vein endothelial cell supernatant. This Stx binding was localized to the A1 and A2 domain of VWF monomeric subunits and reduced the rate of ADAMTS-13-mediated cleavage of the Tyr1605-Met1606 peptide bond in the A2 domain. Stx-VWF interaction and the associated delay in ADAMTS-13-mediated cleavage of VWF may contribute to the pathophysiology of DHUS.  相似文献   

8.
Plasma von Willebrand factor (VWF) is a multimeric glycoprotein from endothelial cells and platelets that mediates adhesion of platelets to sites of vascular injury. In the shear force of flowing blood, however, only the very large VWF multimers are effective in capturing platelets. The multimeric size of VWF can be controlled by proteolysis at the Tyr(842)-Met(843) peptide bond by ADAMTS13 or cleavage of the disulfide bonds that hold VWF multimers together by thrombospondin-1 (TSP-1). The average multimer size of plasma VWF in TSP-1 null mice was significantly smaller than in wild type mice. In addition, the multimer size of VWF released from endothelium in vivo was reduced more rapidly in TSP-1 null mice than in wild type mice. TSP-1, like ADAMTS13, bound to the VWF A3 domain. TSP-1 in the wild type mice, therefore, may compete with ADAMTS13 for interaction with the A3 domain and slow the rate of VWF proteolysis. TSP-1 is stored in platelet alpha-granules and is released upon platelet activation. Significantly, platelet VWF multimer size was reduced upon lysis or activation of wild type murine platelets but not TSP-1 null platelets. This difference had functional consequences in that there was an increase in collagen- and VWF-mediated aggregation of the TSP-1 null platelets under both static and shear conditions. These findings indicate that TSP-1 influences plasma and platelet VWF multimeric size differently and may be more relevant for control of the VWF released from platelets.  相似文献   

9.
Von Willebrand factor (VWF) is a multimeric glycoprotein present in circulating blood and in secretory granules of endothelial cells and platelets. VWF is sensitive to hydrodynamic shear stress that promotes conformational changes, rendering it able to interact with subendothelial proteins and platelets, thus promoting primary haemostasis. Likewise, the binding of the glycopeptide antibiotic ristocetin to VWF triggers hemostatically relevant conformational transitions. These changes reveal both the interaction site for platelet receptor GpIbα and the Tyr1605-Met1606 peptide bond, which is cleaved by the regulatory metalloprotease ADAMTS-13. In this study we investigated by a combined approach of light scattering spectroscopy and turbidimetry the ability of VWF to self-associate in solution in the presence of ristocetin and in the absence of any protein adsorbing surface. Micro- and macro-aggregates induced by ristocetin, have been characterized under static conditions in the early stage of formation and on a longer time scale (up to 10 h). These findings show that VWF multimers form supramolecular structures favoring platelet trapping not only under high shear stress or interaction with external surfaces, but also in solution under static conditions when the conformational state of the protein is changed only by chemical potential of allosteric effectors.  相似文献   

10.
The zinc-protease a disintegrin-like and metalloprotease with thrombospondin type I repeats (ADAMTS13) cleaves the Tyr1605-Met1606 peptide bond of von Willebrand factor (VWF), avoiding the accumulation of ultra large VWF multimers. Hydrolysis by ADAMTS13 of a VWF analog (Asp1596-Arg1668 peptide, fluorescence energy transfer substrate [FRETS]-VWF73) was investigated by a fluorescence quenching method (FRETS method) from 15°C to 45°C and pH values from 4.5 to 10.5. The catalysis was influenced by two ionizable groups, whose pKa values were equal to 6.41 ± 0.08 (ionization enthalpy = 32.6 ± 1.7 kJ/mol) and 4 ± 0.1 (ionization enthalpy = 3.8 ± 0.4 kJ/mol), whereas these values were equal to 6 ± 0.1 and 4.1 ± 0.1, respectively, in Co2+-substituted ADAMTS13. The catalytic process of FRETS-VWF73 hydrolysis showed negative activation entropy (−144 kJ/mol), suggesting that the transition state becomes more ordered than the ground state of the reactants. The kcat/Km values were not linearly correlated with temperature, as expression of change of the kinetic “stickiness” of the substrate. The Met1606-Arg1668 peptide product acted as hyperbolic mixed-type inhibitor of FRETS-VWF73 hydrolysis. Asp1653, Glu1655, Glu1660, Asp1663, together with the hydrophilic side chain of Thr1656 were shown to form a “hot spot” in the VWF A2 sequence, which drives the molecular recognition and allosteric regulation of binding to ADAMTS13. The interaction of the Met1606-Arg1668 region of VWF with ADAMTS13 involves basic residues of the protease and is thus progressively inhibited at pH values >8.50. A molecular model of the FRETS-VWF73 showed that the substrate can fit into the active site only if ADAMTS13 assumes a C-like shape and, interacting with the acidic 1653-1668 region of VWF, properly orients the Tyr1605-Met1606 peptide bond for the cleavage by the zinc-aquo complex in the active site.  相似文献   

11.
The degradation of von Willebrand factor (VWF) depends on the activity of a zinc protease (referred to as ADAMTS-13), which cleaves VWF at the Tyr(1605)-Met(1606) peptide bond. Little information is available on the physiological mechanisms involved in regulation of AD-AMTS-13 activity. In this study, the role of ions on the ADAMTS-13/VWF interaction was investigated. In the presence of 1.5 m urea, the protease cleaved multimeric VWF in the absence of NaCl at pH 8.00 and 37 degrees C, with an apparent k(cat)/K(m) congruent with 3.4 x 10(4) M(-1) s(-1), but this value decreased by approximately 10-fold in the presence of 0.15 M NaCl. Using several monovalent salts, the inhibitory effect was attributed mostly to anions, whose potency was inversely related to the corresponding Jones-Dole viscosity B coefficients (ClO(4)(-) > Cl(-) > F(-)). The specific inhibitory effect of anions was due to their binding to VWF, which caused a conformational change responsible for quenching the intrinsic fluorescence of the protein and reducing tyrosine exposition to bulk solvent. Ristocetin binding to VWF could reduce the apparent affinity and reverse the inhibitory effect of chloride. We hypothesize that, after secretion into the extracellular compartment, VWF is bound by chloride ions abundantly present in this milieu, becoming unavailable to proteolysis by AD-AMTS-13. Shear forces, which facilitate GpIbalpha binding (this effect being artificially obtained by ristocetin), can reverse the inhibitory effect of chloride, whose concentration gradient across the cell membrane may represent a simple but efficient strategy to regulate the enzymatic activity of ADAMTS-13.  相似文献   

12.
目的:探讨动脉瘤性蛛网膜下腔出血(aSAH)患者中血管性假血友病因子(v WF)、血小板膜糖蛋白-140(GMP-140)、血管性血友病因子裂解蛋白酶(ADAMTS13)的表达水平及临床意义。方法:选取2014年1月至2016年12月我院神经外科收治的83例aSAH患者,分为脑血管痉挛(CVS)组37例和无CVS组46例;迟发性脑缺血(DCI)组31例和非DCI组52例;根据不同动脉瘤直径分为5 mm组43例,5-10 mm组29例,10 mm组11例;预后良好组49例和预后不良组34例,检测aSAH患者血浆v WF、GMP-140、ADAMTS13水平,并分析各指标之间的相关性。结果:CVS组患者第4 d、10 d血浆v WF水平高于非CVS组,第1 d、4 d、10 d血浆GMP-140水平高于非CVS组,第1 d、10 d血浆ADAMTS13水平低于非CVS组,差异均有统计学意义(P0.05)。DCI组患者第1 d血浆v WF水平高于非DCI组,ADAMTS13水平低于非DCI组,第4 d血浆v WF、GMP-140水平高于非DCI组,差异均有统计学意义(P0.05)。10 mm组患者第1 d、4 d血浆v WF、GMP-140水平高于5 mm组和5-10 mm组,且5-10 mm组第4d的血浆v WF水平、第1 d的血浆,水平均高于5 mm组,差异有统计学意义(P0.05);10 mm组患者第1d的血浆ADAMTS13水平低于5 mm组和5-10 mm组,且5-10 mm组低于5 mm组,差异有统计学意义(P0.05)。预后良好组患者第4 d、10 d血浆v WF水平低于预后不良组,第1 d、4 d、10 d血浆GMP-140水平低于预后不良组,第1 d、4 d血浆ADAMTS13水平高于预后不良组,差异均有统计学意义(P0.05)。Pearson相关分析结果显示,第1 d、4 d血浆v WF与GMP-140呈正相关,与ADAMTS13呈负相关,GMP-140与ADAMTS13呈负相关(r=0.334、-0.426、-0.398、0.278、-0.311、-0.235,P0.05),第10 d血浆v WF、GMP-140、ADAMTS13之间无明显相关性(P0.05)。结论:v WF、GMP-140、ADAMTS13与CVS、DCI、动脉瘤直径以及预后密切相关,联合检测有助于综合评估aSAH患者病情,改善预后,值得临床推广。  相似文献   

13.
ADAMTS13, a metalloprotease, cleaves von Willebrand factor (VWF) in plasma to generate smaller, less thrombogenic fragments. The interaction of von Willebrand factor with specific ADAMTS13 domains was characterized with a binding assay employing von Willebrand factor immobilized on a plastic surface. ADAMTS13 binding was saturable and reversible. Equilibrium binding occurred within 2 h and the half-time for dissociation was approximately 4 h. Binding to von Willebrand factor was similar with either recombinant ADAMTS13 or normal plasma ADAMTS13; plasma from a patient who lacked ADAMTS13 activity showed no binding. The stoichiometry of binding was one ADAMTS13 per two von Willebrand factor monomers, and the K(d) was 14 nm. The ADAMTS13 metalloprotease and disintegrin domains did not bind VWF detectably. ADAMTS13 truncated after the first thrombospondin type 1 repeat bound VWF with a K(d) of 206 nm, whereas ADAMTS13 truncated after the spacer domain had a K(d) of 23 nm, which is comparable with that of full-length ADAMTS13. Truncation after the eighth thrombospondin type 1 repeat reduced the binding affinity by approximately 3-fold and truncation after the seventh thrombospondin type 1 repeat in addition to the CUB domains increased the affinity for von Willebrand factor by approximately 2-fold. Therefore, the spacer domain is required for ADAMTS13 binding to von Willebrand factor. The first thrombospondin repeat also affects binding, and the C-terminal thrombospondin type 1 and CUB domains of ADAMTS13 may modulate this interaction.  相似文献   

14.
Platelet-decorated von Willebrand factor (VWF) strings anchored to the endothelial surface are rapidly cleaved by ADAMTS13. Individual VWF string characteristics such as number, location, and auxiliary features of the ADAMTS13 cleavage sites were explored here using imaging and computing software. By following changes in VWF string length, we demonstrated that VWF strings are cleaved multiple times, successively shortening string length in the function of time and generating fragments ranging in size from 5 to over 100 μm. These are larger than generally observed in normal plasma, indicating that further proteolysis takes place in circulation. Interestingly, in 89% of all cleavage events, VWF strings elongate precisely at the cleavage site before ADAMTS13 proteolysis. These local elongations are a general characteristic of VWF strings, independent of the presence of ADAMTS13. Furthermore, large elongations, ranging in size from 1.4 to 40 μm, occur at different sites in space and time. In conclusion, ADAMTS13-mediated proteolysis of VWF strings under flow is preceded by large elongations of the string at the cleavage site. These elongations may lead to the simultaneous exposure of many exosites, thereby facilitating ADAMTS13-mediated cleavage.  相似文献   

15.
von Willebrand factor (VWF) strings are removed from the endothelial surface by ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type-1 repeats)-mediated proteolysis. To visualize how single ADAMTS13 molecules bind to these long strings, we built a customized single molecule fluorescence microscope and developed single particle tracking software. Extensive analysis of over 6,000 single inactive ADAMTS13E225Q enzymes demonstrated that 20% of these molecules could be detected in at least two consecutive 60-ms frames and followed two types of trajectories. ADAMTS13E225Q molecules either decelerated in the vicinity of VWF strings, whereas sometimes making brief contact with the VWF string before disappearing again, or readily bound to the VWF strings and this for 120 ms or longer. These interactions were observed at several sites along the strings. Control experiments using an IgG protein revealed that only the second type of trajectory reflected a specific interaction of ADAMTS13 with the VWF string. In conclusion, we developed a dedicated single molecule fluorescence microscope for detecting single ADAMTS13 molecules (nm scale) on their long, flow-stretched VWF substrates (μm scale) anchored on living cells. Comprehensive analysis of all detected enzymes showed a random interaction mechanism for ADAMTS13 with many available binding sites on the VWF strings.  相似文献   

16.
Physiological concentrations of NaCl inhibit the hydrolysis of von Willebrand factor (VWF) by ADAMTS-13. This effect is because of the specific binding of chloride ions to VWF. Urea-induced unfolding was measured in the presence of NaCl, CH3COONa, and NaClO4 at pH 8.0, 25 degrees C, for multimeric VWF, the recombinant A1-A2-A3 VWF domains, and the A1 domain. Chloride stabilizes the folded conformation of the A1-A2-A3 and A1 domains more efficiently than acetate but less strongly than perchlorate. Spectroscopic evidence showed that chloride binds to both the A1 and A1-A2 domain but not to the isolated A2 domain. Binding of Cl- to both wild type (WT) and the natural mutant p.R1306W A1-A2-A3 domains of VWF has a large heat capacity change equal to -1 and -0.4 kcal mol(-1) K(-1) for WT and p.R1306W A1-A2-A3 domains, respectively. This result implies that a burial of a vast apolar surface area is caused by conformational transitions linked to chloride binding. At any temperature, chloride affinity was higher for WT than for the mutant p.R1306W form. Chloride ions inhibit hydrolysis by ADAMTS-13 of the A1-A2-A3 and A1-A2 domains in the presence of either urea or high shear stress, whereas this effect was either absent or negligible in experiments using A2 and A2-A3 domains. These findings show that the A1 domain contains the binding site of chloride ions that control allosterically the proteolysis by ADAMTS-13 of the Tyr1605-Met1606 bond in the A2 domain and that the R1306W mutation of type 2B VWD quenches the binding of chloride ion to the A1 domain.  相似文献   

17.
An enhanced formation of reactive oxygen species and peroxynitrite occurs in several clinical settings including diabetes, coronary artery disease, stroke, sepsis, and chronic inflammatory diseases. Peroxynitrite oxidizes methionine and tyrosine residues to methionine sulfoxide (MetSO) and 3-nitrotyrosine (NT), respectively. Notably, ADAMTS-13 cleaves von Willebrand factor (VWF) exclusively at the Tyr1605–Met1606 peptide bond in the A2 domain. We hypothesized that peroxynitrite could oxidize either or both of these amino acid residues, thus potentially affecting ADAMTS-13-mediated cleavage. We tested our hypothesis using synthetic peptide substrates based on: (1) VWF Asp1596–Ala1669 sequence (VWF74) and (2) VWF Asp1596–Ala1669 sequence containing nitrotyrosine (VWF74-NT) or methionine sulfoxide (VWF74-MetSO) at position 1605 or 1606, respectively. The peptides were treated with recombinant ADAMTS-13 and the cleavage products analyzed by RP-HPLC. VWF74 oxidized by peroxynitrite underwent a severe impairment of its hydrolysis. Likewise, VWF74-MetSO was minimally hydrolyzed, whereas VWF74-NT was hydrolyzed slightly more efficiently than VWF74. Oxidation by peroxynitrite of purified VWF multimers inhibited ADAMTS-13 hydrolysis, but did not alter their electrophoretic pattern nor their ability to induce platelet agglutination by ristocetin. Moreover, VWF purified from type 2 diabetic patients showed oxidative damage, as revealed by enhanced carbonyl, NT, and MetSO content and was partially resistant to ADAMTS-13 hydrolysis. In conclusion, peroxynitrite may contribute to prothrombotic effects, hindering the proteolytic processing by ADAMTS-13 of high-molecular-weight VWF multimers, which have the highest ability to bind and activate platelets in the microcirculation.  相似文献   

18.
The globular-to-unraveled conformation transition of von Willebrand factor (vWF), a large polymeric glycoprotein in human blood plasma, is a crucial step in the process of clotting at sites of vascular injury. However, unraveling of vWF multimers in uninjured vasculature can lead to pathology (i.e., thrombus formation or degradation of vWF proteins by enzyme ADAMTS13, making them nonfunctional). To identify blood flow conditions that might induce pathological unraveling of vWF multimers, here we have computed the globular-to-unraveled transition rate of vWF multimers subjected to varying strain rate elongational flow by employing an enhanced sampling technique, the weighted ensemble method. Weighted ensemble sampling was employed instead of standard brute-force simulations because pathological blood flow conditions can induce undesired vWF unraveling on timescales potentially inaccessible to standard simulation methods. Results here indicate that brief but periodic exposure of vWF to the elongational flow of strain rate greater than or equal to 2500 s−1 represents a source of possible pathology caused by the undesired unraveling of vWF multimers.  相似文献   

19.
The hemostatic activity of von Willebrand factor (vWF) is strongly dependent on its multimeric structure, with the highest activity in 'unusually large' multimers secreted from endothelial cells. The multimeric structure is regulated by a plasma protease, vWF-cleaving protease (vWF-CP, or ADAMTS-13). ADAMTS-13 mRNA is variably expressed in liver and other tissues. Because 15-25% of circulating vWF is stored in platelets, the presence and function of ADAMTS-13 in platelets are important issues. Here we report ADAMTS-13 expression in human platelets. Western blot analysis and flow cytometric analysis on permeabilized platelets revealed the presence of ADAMTS-13 protein. Real-time PCR demonstrated that ADAMTS-13 mRNA is present in platelets of six healthy volunteers, with little quantitative difference. The presence of ADAMTS-13 in platelets may imply the functional role of this enzyme in the local regulation of platelet function at the site of vascular injury or thrombus formation, and provide a useful tool for the analysis of structure and function of this enzyme.  相似文献   

20.
ADAMTS13 is a plasma metalloprotease that cleaves ultralarge von Willebrand factor multimers to generate less thrombogenic fragments. Although this cleavage can occur at the surface of endothelial cells, it is currently unknown whether this process involves binding of the ADAMTS13 to the endothelial cell plasma membrane. Using different assay systems, we present evidence that ADAMTS13 binds to endothelial cells in a specific, reversible, and time-dependent manner with a Kd of 58 nm. This binding requires the COOH-terminal thrombospondin type 1 repeats of the protease. Binding is inhibited in the presence of heparin and by trypsin treatment of the cells. ADAMTS13 that was prebound to endothelial cells exhibited increased proteolysis of VWF as compared with ADAMTS13 present only in solution. These data support the notion that cleavage of VWF occurs mainly at the endothelial cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号