首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinamide adenine dinucleotide (NAD) plays an important role in cellular metabolism and acts as hydrideaccepting and hydride-donating coenzymes in energy production. Identification of NAD protein interacting sites can significantly aid in understanding the NAD dependent metabolism and pathways, and it could further contribute useful information for drug development. In this study, a computational method is proposed to predict NAD-protein interacting sites using the sequence information and structure-based information. All models developed in this work are evaluated using the 7-fold cross validation technique. Results show that using the position specific scoring matrix (PSSM) as an input feature is quite encouraging for predicting NAD interacting sites. After considering the unbalance dataset, the ensemble support vector machine (SVM), which is an assembly of many individual SVM classifiers, is developed to predict the NAD interacting sites. It was observed that the overall accuracy (Acc) thus obtained was 87.31% with Matthew's correlation coefficient (MCC) equal to 0.56. In contrast, the corresponding rate by the single SVM approach was only 80.86% with MCC of 0.38. These results indicated that the prediction accuracy could be remarkably improved via the ensemble SVM classifier approach.  相似文献   

2.

Background  

Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. Recent research on protein binding site prediction has been mainly based on widely known machine learning techniques, such as artificial neural networks, support vector machines, conditional random field, etc. However, the prediction performance is still too low to be used in practice. It is necessary to explore new algorithms, theories and features to further improve the performance.  相似文献   

3.
Lin HH  Han LY  Cai CZ  Ji ZL  Chen YZ 《Proteins》2006,62(1):218-231
Transporters play key roles in cellular transport and metabolic processes, and in facilitating drug delivery and excretion. These proteins are classified into families based on the transporter classification (TC) system. Determination of the TC family of transporters facilitates the study of their cellular and pharmacological functions. Methods for predicting TC family without sequence alignments or clustering are particularly useful for studying novel transporters whose function cannot be determined by sequence similarity. This work explores the use of a machine learning method, support vector machines (SVMs), for predicting the family of transporters from their sequence without the use of sequence similarity. A total of 10,636 transporters in 13 TC subclasses, 1914 transporters in eight TC families, and 168,341 nontransporter proteins are used to train and test the SVM prediction system. Testing results by using a separate set of 4351 transporters and 83,151 nontransporter proteins show that the overall accuracy for predicting members of these TC subclasses and families is 83.4% and 88.0%, respectively, and that of nonmembers is 99.3% and 96.6%, respectively. The accuracies for predicting members and nonmembers of individual TC subclasses are in the range of 70.7-96.1% and 97.6-99.9%, respectively, and those of individual TC families are in the range of 60.6-97.1% and 91.5-99.4%, respectively. A further test by using 26,139 transmembrane proteins outside each of the 13 TC subclasses shows that 90.4-99.6% of these are correctly predicted. Our study suggests that the SVM is potentially useful for facilitating functional study of transporters irrespective of sequence similarity.  相似文献   

4.
5.
MOTIVATION: In order to extract protein sequences from nucleotide sequences, it is an important step to recognize points at which regions start that code for proteins. These points are called translation initiation sites (TIS). RESULTS: The task of finding TIS can be modeled as a classification problem. We demonstrate the applicability of support vector machines for this task, and show how to incorporate prior biological knowledge by engineering an appropriate kernel function. With the described techniques the recognition performance can be improved by 26% over leading existing approaches. We provide evidence that existing related methods (e.g. ESTScan) could profit from advanced TIS recognition.  相似文献   

6.
Elucidation of the interaction of proteins with different molecules is of significance in the understanding of cellular processes. Computational methods have been developed for the prediction of protein-protein interactions. But insufficient attention has been paid to the prediction of protein-RNA interactions, which play central roles in regulating gene expression and certain RNA-mediated enzymatic processes. This work explored the use of a machine learning method, support vector machines (SVM), for the prediction of RNA-binding proteins directly from their primary sequence. Based on the knowledge of known RNA-binding and non-RNA-binding proteins, an SVM system was trained to recognize RNA-binding proteins. A total of 4011 RNA-binding and 9781 non-RNA-binding proteins was used to train and test the SVM classification system, and an independent set of 447 RNA-binding and 4881 non-RNA-binding proteins was used to evaluate the classification accuracy. Testing results using this independent evaluation set show a prediction accuracy of 94.1%, 79.3%, and 94.1% for rRNA-, mRNA-, and tRNA-binding proteins, and 98.7%, 96.5%, and 99.9% for non-rRNA-, non-mRNA-, and non-tRNA-binding proteins, respectively. The SVM classification system was further tested on a small class of snRNA-binding proteins with only 60 available sequences. The prediction accuracy is 40.0% and 99.9% for snRNA-binding and non-snRNA-binding proteins, indicating a need for a sufficient number of proteins to train SVM. The SVM classification systems trained in this work were added to our Web-based protein functional classification software SVMProt, at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi. Our study suggests the potential of SVM as a useful tool for facilitating the prediction of protein-RNA interactions.  相似文献   

7.
We describe a bioinformatics tool that can be used to predict the position of phosphorylation sites in proteins based only on sequence information. The method uses the support vector machine (SVM) statistical learning theory. The statistical models for phosphorylation by various types of kinases are built using a dataset of short (9-amino acid long) sequence fragments. The sequence segments are dissected around post-translationally modified sites of proteins that are on the current release of the Swiss-Prot database, and that were experimentally confirmed to be phosphorylated by any kinase. We represent them as vectors in a multidimensional abstract space of short sequence fragments. The prediction method is as follows. First, a given query protein sequence is dissected into overlapping short segments. All the fragments are then projected into the multidimensional space of sequence fragments via a collection of different representations. Those points are classified with pre-built statistical models (the SVM method with linear, polynomial and radial kernel functions) either as phosphorylated or inactive ones. The resulting list of plausible sites for phosphorylation by various types of kinases in the query protein is returned to the user. The efficiency of the method for each type of phosphorylation is estimated using leave-one-out tests and presented here. The sensitivities of the models can reach over 70%, depending on the type of kinase. The additional information from profile representations of short sequence fragments helps in gaining a higher degree of accuracy in some phosphorylation types. The further development of an automatic phosphorylation site annotation predictor based on our algorithm should yield a significant improvement when using statistical algorithms in order to quantify the results.  相似文献   

8.
Protein S-nitrosylation plays a key and specific role in many cellular processes. Detecting possible S-nitrosylated substrates and their corresponding exact sites is crucial for studying the mechanisms of these biological processes. Comparing with the expensive and time-consuming biochemical experiments, the computational methods are attracting considerable attention due to their convenience and fast speed. Although some computational models have been developed to predict S-nitrosylation sites, their accuracy is still low. In this work,we incorporate support vector machine to predict protein S-nitrosylation sites. After a careful evaluation of six encoding schemes, we propose a new efficient predictor, CPR-SNO, using the coupling patterns based encoding scheme. The performance of our CPR-SNO is measured with the area under the ROC curve (AUC) of 0.8289 in 10-fold cross validation experiments, which is significantly better than the existing best method GPS-SNO 1.0's 0.685 performance. In further annotating large-scale potential S-nitrosylated substrates, CPR-SNO also presents an encouraging predictive performance. These results indicate that CPR-SNO can be used as a competitive protein S-nitrosylation sites predictor to the biological community. Our CPR-SNO has been implemented as a web server and is available at http://math.cau.edu.cn/CPR -SNO/CPR-SNO.html.  相似文献   

9.
10.

Background  

The prediction of protein-protein binding site can provide structural annotation to the protein interaction data from proteomics studies. This is very important for the biological application of the protein interaction data that is increasing rapidly. Moreover, methods for predicting protein interaction sites can also provide crucial information for improving the speed and accuracy of protein docking methods.  相似文献   

11.
Li ZC  Zhou XB  Lin YR  Zou XY 《Amino acids》2008,35(3):581-590
Structural class characterizes the overall folding type of a protein or its domain. Most of the existing methods for determining the structural class of a protein are based on a group of features that only possesses a kind of discriminative information for the prediction of protein structure class. However, different types of discriminative information associated with primary sequence have been completely missed, which undoubtedly has reduced the success rate of prediction. We present a novel method for the prediction of protein structure class by coupling the improved genetic algorithm (GA) with the support vector machine (SVM). This improved GA was applied to the selection of an optimized feature subset and the optimization of SVM parameters. Jackknife tests on the working datasets indicated that the prediction accuracies for the different classes were in the range of 97.8–100% with an overall accuracy of 99.5%. The results indicate that the approach has a high potential to become a useful tool in bioinformatics.  相似文献   

12.
Lysine acetylation is an essentially reversible and high regulated post-translational modification which regulates diverse protein properties. Experimental identification of acetylation sites is laborious and expensive. Hence, there is significant interest in the development of computational methods for reliable prediction of acetylation sites from amino acid sequences. In this paper we use an ensemble of support vector machine classifiers to perform this work. The experimentally determined acetylation lysine sites are extracted from Swiss-Prot database and scientific literatures. Experiment results show that an ensemble of support vector machine classifiers outperforms single support vector machine classifier and other computational methods such as PAIL and LysAcet on the problem of predicting acetylation lysine sites. The resulting method has been implemented in EnsemblePail, a web server for lysine acetylation sites prediction available at http://www.aporc.org/EnsemblePail/.  相似文献   

13.
14.
Teramoto R  Aoki M  Kimura T  Kanaoka M 《FEBS letters》2005,579(13):2878-2882
Small interfering RNAs (siRNAs) are becoming widely used for sequence-specific gene silencing in mammalian cells, but designing an effective siRNA is still a challenging task. In this study, we developed an algorithm for predicting siRNA functionality by using generalized string kernel (GSK) combined with support vector machine (SVM). With GSK, siRNA sequences were represented as vectors in a multi-dimensional feature space according to the numbers of subsequences in each siRNA, and subsequently classified with SVM into effective or ineffective siRNAs. We applied this algorithm to published siRNAs, and could classify effective and ineffective siRNAs with 90.6%, 86.2% accuracy, respectively.  相似文献   

15.
Mitochondria are considered as one of the core organelles of eukaryotic cells hence prediction of mitochondrial proteins is one of the major challenges in the field of genome annotation. This study describes a method, MitPred, developed for predicting mitochondrial proteins with high accuracy. The data set used in this study was obtained from Guda, C., Fahy, E. & Subramaniam, S. (2004) Bioinformatics 20, 1785-1794. First support vector machine-based modules/methods were developed using amino acid and dipeptide composition of proteins and achieved accuracy of 78.37 and 79.38%, respectively. The accuracy of prediction further improved to 83.74% when split amino acid composition (25 N-terminal, 25 C-terminal, and remaining residues) of proteins was used. Then BLAST search and support vector machine-based method were combined to get 88.22% accuracy. Finally we developed a hybrid approach that combined hidden Markov model profiles of domains (exclusively found in mitochondrial proteins) and the support vector machine-based method. We were able to predict mitochondrial protein with 100% specificity at a 56.36% sensitivity rate and with 80.50% specificity at 98.95% sensitivity. The method estimated 9.01, 6.35, 4.84, 3.95, and 4.25% of proteins as mitochondrial in Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, mouse, and human proteomes, respectively. MitPred was developed on the above hybrid approach.  相似文献   

16.
Bhasin M  Zhang H  Reinherz EL  Reche PA 《FEBS letters》2005,579(20):4302-4308
DNA methylation plays a key role in the regulation of gene expression. The most common type of DNA modification consists of the methylation of cytosine in the CpG dinucleotide. At the present time, there is no method available for the prediction of DNA methylation sites. Therefore, in this study we have developed a support vector machine (SVM)-based method for the prediction of cytosine methylation in CpG dinucleotides. Initially a SVM module was developed from human data for the prediction of human-specific methylation sites. This module achieved a MCC and AUC of 0.501 and 0.814, respectively, when evaluated using a 5-fold cross-validation. The performance of this SVM-based module was better than the classifiers built using alternative machine learning and statistical algorithms including artificial neural networks, Bayesian statistics, and decision trees. Additional SVM modules were also developed based on mammalian- and vertebrate-specific methylation patterns. The SVM module based on human methylation patterns was used for genome-wide analysis of methylation sites. This analysis demonstrated that the percentage of methylated CpGs is higher in UTRs as compared to exonic and intronic regions of human genes. This method is available on line for public use under the name of Methylator at http://bio.dfci.harvard.edu/Methylator/.  相似文献   

17.
Glucose is a simple sugar that plays an essential role in many basic metabolic and signaling pathways. Many proteins have binding sites that are highly specific to glucose. The exponential increase of genomic data has revealed the identity of many proteins that seem to be central to biological processes, but whose exact functions are unknown. Many of these proteins seem to be associated with disease processes. Being able to predict glucose‐specific binding sites in these proteins will greatly enhance our ability to annotate protein function and may significantly contribute to drug design. We hereby present the first glucose‐binding site classifier algorithm. We consider the sugar‐binding pocket as a spherical spatio‐chemical environment and represent it as a vector of geometric and chemical features. We then perform Random Forests feature selection to identify key features and analyze them using support vector machines classification. Our work shows that glucose binding sites can be modeled effectively using a limited number of basic chemical and residue features. Using a leave‐one‐out cross‐validation method, our classifier achieves a 8.11% error, a 89.66% sensitivity and a 93.33% specificity over our dataset. From a biochemical perspective, our results support the relevance of ordered water molecules and ions in determining glucose specificity. They also reveal the importance of carboxylate residues in glucose binding and the high concentration of negatively charged atoms in direct contact with the bound glucose molecule. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Conserved 12-bp element downstream from mRNA polyadenylation sites   总被引:7,自引:0,他引:7  
Michael J. Renan   《Gene》1987,60(2-3):245-254
  相似文献   

19.
The mRNA 3'-untranslated region (3'-UTR) has been shown to have important roles in the regulation of mRNA function. In this study, we investigated the human endothelial nitric oxide synthase (eNOS) 3'-UTR to evaluate its potential regulatory role. 3'-RACE analysis revealed that the human eNOS mRNA has multiple alternative polyadenylation sites. Apart from the proximal site (418bp downstream of the stop codon), we identified two additional distal sites approximately 770 and 1478bp downstream of the stop codon. In addition, Northern analysis showed that the usage of these sites differed among human tissues. Further, amounts of these eNOS mRNAs were changed during growth of cultured human aortic endothelial cells; mRNAs with long 3'-UTRs decreased more rapidly than total mRNA, as cells approached confluency. Thus, the 3'-UTRs of human eNOS results from alternative polyadenylation sites and differ across tissues and during cell growth.  相似文献   

20.
Several QSAR (quantitative structure-activity relationships) models for predicting the inhibitory activity of 117 Aurora-A kinase inhibitors were developed. The whole dataset was split into a training set and a test set based on two different methods, (1) by a random selection; and (2) on the basis of a Kohonen’s self-organizing map (SOM). Then the inhibitory activity of 117 Aurora-A kinase inhibitors was predicted using multilinear regression (MLR) analysis and support vector machine (SVM) methods, respectively. For the two MLR models and the two SVM models, for the test sets, the correlation coefficients of over 0.92 were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号