首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have located the epitopes recognized by four different monoclonal antibodies which bind to partially unfolded creatine kinase (CK) (ATP: creatine N-phosphotransferase, EC 2.7.3.2) but not to the native enzyme. The epitopes appear to be buried within the CK structure in its native, proteinase-resistant, state. When the epitopes are made accessible to antibody by mild denaturation, CK becomes enzymically-inactive and can be cleaved by proteinase V8 into two large fragments which retain the epitopes and may represent domains. Epitopes on each V8 fragment are associated with highly conserved sequences and are brought physically close to the active site of the enzyme during the later stages of CK refolding and reactivation. The results suggest a catalytic site formed at the interface between two domains which carry the epitopes on their interacting surfaces. Separation of loosely associated domains before or during immunization may account for the origin of antibodies against buried epitopes.  相似文献   

2.
Chemical cleavage at cysteine residues with nitrothiocyanobenzoic acid shows that the last 98 amino acids of the 380-amino-acid sequence of chick muscle creatine kinase are sufficient for binding of the monoclonal antibody CK-ART. Removal of the last 30 amino acids by cleavage at methionine residues with CNBr results in loss of CK-ART binding. CK-ART binding is also lost when these C-terminal methionine residues are oxidized to sulphoxide, but binding is regained on reduction. Proteinase K 'nicks' native CK at a single site near the C-terminus and two fragments of 327 amino acides and 53 amino acids can be separated by subsequent SDS or urea treatment. CK-ART still binds normally to 'nicked' CK, which is enzymically inactive. After treatment with either urea (in a competition enzyme-linked immunosorbent assay) or SDS (on Western blots), however, CK-ART binds to neither of the two fragments, although these treatments do not affect binding to intact CK. This suggests that parts of both CK fragments contribute to the CK-ART epitope. CK-ART is both species- and isoenzyme-specific, binding only to chick M-CK. The only C-terminal regions containing chick-specific sequences are residues 300-312 and residues 368-371, the latter group being close to the essential methionine residues. We suggest that one, or possibly both, of these regions is involved in forming the conformational epitope on the surface of the CK molecule which CK-ART recognizes. Native CK is resistant to trypsin digestion. The C-terminal half of urea-treated and partly-refolded CK is also resistant to trypsin digestion, whereas the N-terminal half is readily digested. The results suggest a C-terminal region which can refold more rapidly than the rest of the CK molecule and provide evidence for an intermediate in CK refolding.  相似文献   

3.
Proteinase K cleaves a small peptide from native muscle-specific creatine kinase. We present evidence, from the binding of two monoclonal antibodies to formic acid-cleavage fragments and proteinase K-digest fragments of chick muscle creatine kinase, that the proteinase K-cleavage site is in the C-terminal region of the molecule. This specificity of proteinase K, which is not normally a highly specific enzyme, and the continued association of the two peptide fragments after cleavage suggest an unusual conformational feature in the cleavage-site region. By applying predictive methods for hydrophobicity and secondary structure to an amino acid sequence in this region, we suggest possible structural features at the cleavage site that are evidently conserved across avian and mammalian species. The most likely site is next to, or within, a beta-turn on the surface of the molecule.  相似文献   

4.
1. A monoclonal antibody (subclass immunoglobulin G1) has been raised against human brain-type creatine kinase (CK-BB). This antibody did not cross-react with either muscle-type creatine kinase (CK-MM) or heart-type creatine kinase (CK-MB). 2. The binding constant measured with native antibody was 6 X 10(8) M-1. In the presence of 2mM-dithiothreitol this constant was some 40-50-fold greater. 3. Partial reduction and alkylation showed that the increased binding was due to a direct effect on the antibody and was associated with concomitant cleavage of the heavy-heavy interchain disulphide bonds. The binding constant measured with Fab' fragments produced from reduced and alkylated antibody was similar to that shown by the native, unreduced antibody. 4. The molecular weight of the complex found in the absence of mercaptans was consistent with one antibody and one CK-BB molecule, whereas the molecular weight estimated with reduced and alkylated antibody was consistent with a complex of two antibodies and two CK-BB molecules. 5. It is proposed that mercaptans increase the flexibility of the hinge region of the antibody molecule, allowing the formation of a higher-order complex with increased avidity for the CK-BB dimer.  相似文献   

5.
Protein kinase CK2, formerly known as casein kinase II, is a ubiquitous protein serine/threonine kinase. The enzyme exists in tetrameric complexes composed of two catalytic (CK2α and/or CK2α′) subunits and two subunits (CK2β) that appear to have a role in modulating the activity of the catalytic subunits. With the exception of their unrelated carboxy-terminal domains, the two isozymic forms of mammalian CK2 display extensive sequence identity. Furthermore, CK2α and CK2α′ exhibit remarkable conservation between species, suggesting that they may have unique functions. In the present study, the cDNAs encoding CK2α and CK2α′ were modified by addition of the hemagglutinin tag of the influenza virus at the amino terminus of the respective proteins. The epitope-tagged proteins were transfected into Cos-7 cells and the localization of the expressed proteins determined by indirect immunofluorescence using monoclonal antibodies specific for the epitope tag. The use of transfection favors the formation of homotetrameric complexes (i.e., α2β2, α′2β2) instead of heterotetrameric complexes (i.e., αα′β2) that are present in many cells. Epitope-tagged CK2α and CK2α′ displayed kinase activity and the ability to form complexes with CK2β. The results of these studies also indicate definitively that CK2α and CK2α′ are both localized predominantly within the nucleus. Mutation of conserved lysine residues within the ATP binding domains of CK2α and CK2α′ resulted in loss of kinase activity. However, examination of these mutants indicates that kinase activity is not essential for formation of complexes between subunits of CK2 and is not required for nuclear localization of CK2. J. Cell. Biochem. 64: 525–537. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Creatine kinase (CK) has been postulated to consist of two flexibly hinged domains. A previously demonstrated protease-sensitive site in M-CK (Morris & Jackson, 1991) has directed our attempts to dissect mitochondrial CK (Mi-CK) into two protein fragments encompassing amino acids [1-167] and [168-380]. When expressed separately in Escherichia coli, the two fragments yielded large amounts of insoluble inclusion bodies, from which the respective polypeptides could be purified by a simple two-step procedure. In contrast, co-expression of the two fragments yielded a soluble, active, and correctly oligomerizing enzyme. This discontinuous CK showed nearly full specific activity and was virtually indistinguishable from native Mi-CK by far- and near-UV CD. However, the positive cooperativity of substrate binding was abolished, suggesting a role of the covalent domain linkage in the crosstalk between the substrate binding sites for ATP and creatine. The isolated C-terminal fragment refolded into a native-like conformation in vitro, whereas the N-terminal fragment was largely unfolded. Prefolded [168-380] interacted in vitro with [1-167] to form an active enzyme. Kinetic analysis indicated that the fragments associate rapidly and with high affinity (1/K1 = 17 microM) and then isomerize slowly to an active enzyme (k2 = 0.12 min-1; k-2 = 0.03 min-1). Our data suggest that the C-terminal fragment of Mi-CK represents an autonomous folding unit, and that the folding of the C-terminal part might precede the conformational stabilization of the N-terminal moiety in vivo.  相似文献   

7.
The total activity and range of the creatine kinase (CK) isozymes have been studied in the homogenate and subcellular fractions (nuclei, mitochondria, cytoplasm) of the rat brain and heart during postnatal ontogenesis. The total activity of CK in the brain and heart of newborn rats was found to be 4 and 2 times less, resp., than in those of adults. The age patterns were established in the activity of cytoplasmic (CK-1, CK-2 and CK-3) and mitochondrial (CK-4) isozymes. During the whole postnatal development the rat brain contains only one cytoplasmic isozyme, CK-1. In the heart of newborn rats, as compared with adults, the content of CK-1 and CK-2 is much higher and that of CK-3 lower. On the 12-15th day of life the range of the CK isozymes approaches that characteristic of adult animals. The activity of CK-4 was found in the brain on the 5-7th day of life and in the heart on 12-15th day. In the range of the CK isozymes in the adult brain the content of mitochondrial CK amounts to 19.3% and in the heart to 16.5%. The data obtained complement the literary ones suggesting the low level of energy-forming processes in the brain and heart cells at the early stages of the rat postnatal development.  相似文献   

8.
Antibodies raised against the synthetic peptide corresponding to the carboxy-terminal 24 amino acids (305-328) of the heavy chain of the hemagglutinin molecule of influenza virus A/X-31 (H3) bind this peptide at three antigenic sites. These sites were identified by assaying binding of polyclonal BALB/c mouse antipeptide sera to the complete set of all possible di-, tri, tetra-, penta-, hexa-, hepta-, and octapeptides homologous with the 24-residue sequence. Individual epitopes were defined and essential residues identified by testing the binding of monoclonal antibodies to sets of peptide analogues in which every one of the homologous residues was replaced in turn by each of the 19 alternative genetically coded amino acids. The immunodominant epitope was shown to be a linear sequence of five amino acids, 314LKLAT318. Replacement of any one of these residues with any other amino acid resulted in loss of antibody binding, indicating that all five are essential to the interaction and that they are probably contact residues. Another antigenic site contains at least two overlapping epitopes: polyclonal sera recognize predominantly an epitope or epitopes encompassed by the linear sequence 320MRNVPEKQT328, whereas the epitope defined by a particular monoclonal antibody comprises the seven amino acids 322NVPEKQT328, of which N322, E325, and Q327 were implicated as contact residues.  相似文献   

9.
Mapping the binding of monoclonal antibodies to histone H5   总被引:2,自引:0,他引:2  
E Mendelson  B J Smith  M Bustin 《Biochemistry》1984,23(15):3466-3471
The binding sites of nine monoclonal antibodies along the polypeptide chain of histone H5 were mapped. Immunoblotting experiments with peptides generated from H5 by trypsin digestion, N-bromosuccinimide cleavage, and cyanogen bromide cleavage revealed that all of the monoclonal antibodies reacted with the globular region of H5 which is encompassed by amino acid residues 22-98. Within this globular segment, the epitopes could be subdivided into three regions. Monoclonals 1G11, 2E5, and 2H5 bind to residues 28-31. The close proximity of the epitopes was verified by a competitive enzyme-linked immunosorbent assay and by their binding pattern to a tryptic digest of H5. Monoclonals 4C6, 6E12, and 2E12 bind to a region encompassed by amino acids 28-53 while monoclonals 4H7, 1C3, and 3H9 bind to a region encompassed by residues 53-98. Precise localization of the epitopes in the primary sequence of H5 will allow detailed studies on the mode of binding of H5 to core particles in chromatin.  相似文献   

10.
Three monoclonal antibodies (mAb) directed against the regulatory domain of the protein kinase C gamma (PKC gamma); 15G4, 5A2 and 36G9, were shown to display distinct properties with respect to PKC gamma kinase activity [Cazaubon, S., Marais, R., Parker, P. & Strosberg, A.D. (1989) Eur. J. Biochem. 182, 401-406]. The mAb 5A2 and 36G9, which act as potent inhibitors of the cofactor-dependent kinase activity, can no longer bind PKC gamma in the presence of phosphatidylserine and phosphatidylserine/phorbol ester, respectively; 15G4 binding is not influenced by effectors. Due to this functional relationship between the inhibitory mAb- and cofactor-binding sites, we sought to localize the mAb epitopes with respect to the functional sites of PKC gamma. For this purpose, several deletions were introduced at the 5' end of the PKC gamma cDNA and the mutant proteins were expressed in Escherichia coli. The determination of the immunoreactivity of the deleted PKC gamma proteins shows that the amino acid residues essential to the binding of 5A2 and 36G9 are directly adjacent to the second cysteine-rich motif: these are contained in the sequences at positions 151-163 and 164-197, respectively. In addition, various deletions around the C1 region of the regulatory domain allowed the identification of the second cysteine-rich motif as a functional binding site for phorbol dibutyrate. These deletion studies thus demonstrate that the epitopes recognized by the inhibitory mAbs 5A2 and 36G9 are distinct from the cofactor-binding sites. This suggests that the binding of phosphatidylserine and phorbol ester induce conformational changes in the regulatory domain of PKC, which are thus responsible for the loss of the 5A2 and 36G9 immunoreactivity of the native protein. In this conformational state, PKC gamma conserves its ability to interact with the non-inhibitory mAb 15G4. By using synthetic peptides, the 15G4 epitope was localized to the sequence 297-310 in the V3 variable region. This indicates that the flexibility of the V3 region, which delimits the C-terminus of the regulatory domain, may not be necessary for the allosteric activation of PKC. In view of these results, we propose that PKC activation by its cofactors results in intramolecular changes which allow the enzyme to bind exogenous substrates.  相似文献   

11.
The alternative oxidase is found in the inner mitochondrial membranes of plants and some fungi and protists. A monoclonal antibody raised against the alternative oxidase from the aroid lily Sauromatum guttatum has been used extensively to detect the enzyme in these organisms. Using an immunoblotting strategy, the antibody binding site has been localised to the sequence RADEAHHRDVNH within the soybean alternative oxidase 2 protein. Examination of sequence variants showed that A2 and residues C-terminal to H7 are required for recognition by the monoclonal antibody raised against the alternative oxidase. The recognition sequence is highly conserved among all alternative oxidase proteins and is absolutely conserved in 12 of 14 higher plant sequences, suggesting that this antibody will continue to be extremely useful in studying the expression and synthesis of the alternative oxidase.  相似文献   

12.
S S David  B E Haley 《Biochemistry》1999,38(26):8492-8500
Creatine kinase (CK) will autoincorporate radiolabel from [gamma32P]ATP and has thus been reported to be autophosphorylated. Also, in contrast to normal brain enzyme, CK in Alzheimer-diseased brain homogenate shows greatly decreased activity, abolished photolabeling with [32P]8N3ATP, and no detectable autoincorporation of radiolabel by [gamma32P]ATP. Surprisingly, our studies with both human brain and purified CK showed that [alpha32P]ATP, [gamma32P]ATP, [alpha32P]ADP, [2,8H3]ATP, [gamma32P]2',3'-O-(2,4, 6-trinitrophenyl)-ATP, and [gamma32P]benzophenone-gammaATP all autoincorporate radiolabel into CK with good efficiency. This demonstrates that the gamma-phosphate and the 2' and 3' hydroxyls are not involved in the covalent linkage and that all three phosphates, the ribose and base of the ATP molecule are retained upon autoincorporation (nucleotidylation). Treatment with NaIO3 to break the 2'-3' linkage effected total loss of radiolabel indicating that nucleotidylation resulted in opening of the ribose ring at the C1' position. Nucleotidylation with increasing [alpha32P]ATP at 37 degrees C gives an approximate k0.5 of 125 microM and saturates at 340 microM nucleotide. Modification of 8-10% of the copy numbers occurs at saturation, and CK activity is inhibited to approximately the same degree. Low micromolar levels of native substrates such as ADP, ATP, and phosphocreatine substantially reduce [alpha32P]ATP nucleotidylation. In contrast, AMP, GTP, GMP, NADH, and creatine did not effectively reduce nucleotidylation. When [alpha32P]ATP-nucleotidylated or [alpha32P]8N3ATP-photolabeled CK is treated with trypsin a single, identical radiolabeled peptide (V279-R291) is generated that comigrates on reverse phase HPLC and Tris-tricine electrophoresis. Nucleotidylation into this peptide was prevented 86% by the presence of ATP. We conclude that CK is nucleotidylated within the active site by modification at the C1'position and that autophosphorylation of this enzyme does not occur.  相似文献   

13.
The interaction of human apolipoprotein (apo-) E3 with heparin was examined using heparin-Sepharose as a model system. The approach taken to determine the region of apo-E that is responsible for binding to heparin was to identify apo-E monoclonal antibodies that inhibited heparin binding, to determine the epitopes of the inhibiting antibodies, and finally to examine the heparin binding of fragments containing the inhibiting antibody epitopes. Three antibodies, designated 1D7, 6C5, and 3H1, were found to inhibit binding, suggesting that multiple heparin binding sites were present on apo-E. The epitopes of the inhibiting antibodies were determined by immunoblot analysis of synthetic or proteolytic fragments of apo-E. Measurement of the heparin binding activity of fragments containing epitopes of the inhibiting antibodies demonstrated that apo-E3 contains two heparin binding sites. The first site is located in the vicinity of residues 142-147 and coincides with the 1D7 epitope. The second binding site is contained in the carboxyl-terminal region of apo-E and is inhibited by 3H1, the epitope of which is located between residues 243 and 272. The epitope of the third inhibiting antibody, 6C5, is located at the amino terminus of apo-E; however, this antibody inhibits the second heparin binding site located in the carboxyl-terminal region. A head-to-tail association of apo-E, in which the 6C5 epitope and the second heparin binding site would be in close proximity, is proposed to account for this observation. In the lipid-free state both heparin binding sites on apo-E are expressed; however, when apo-E is complexed to phospholipid or on the surface of a lipoprotein particle, only the first binding site (residues 142-147) is expressed.  相似文献   

14.
The C-terminal region of Pseudomonas aeruginosa strain K (PAK) pilin comprises both an epitope for the strain-specific monoclonal antibody PK99H, which blocks pilus-mediated adherence, and the adherence binding domain for buccal and tracheal epithelial cells. The PK99H epitope was located in sequence 134-140 (Asp-Glu-Gln-Phe-Ile-Pro-Lys) by using a single alanine replacement analysis on the 17-residue synthetic peptide corresponding to the PAK C-terminal sequence 128-144. Indeed, a 7-residue peptide corresponding to this sequence was shown to have a similar binding affinity to that of the native conformationally constrained (disulfide bridged) 17-residue peptide. This epitope was found to contain two critical residues (Phe137 and Lys140) and one nonessential residue (Gln136). Interestingly, the peptide, Phe-Ile-Pro-Lys, which constitutes the four most important side chains for antibody binding did not bind to PK99H. It was of interest to investigate the structural basis of the strain-specificity of PK99H utilizing naturally occurring pilin sequences. Therefore, all different residues found in the sequence corresponding to the PK99H epitope of the four other strains (PAO, CD4, K122-4, and KB7) were substituted one at a time in the PAK sequence and the changes in binding affinity of these analogs to the antibody PK99H were determined by competitive ELISA. The strain-specificity of PK99H for strains PAO, K122-4, and KB7 can be explained by the accumulated sequence changes in these strains, and at least two amino acid changes were required to explain the strain-specificity of PK99H. Similarly, cross-reactivity of PK99H with CD4 can be explained by the fact that there was only one side chain responsible for decreasing binding affinity compared to the PAK sequence.  相似文献   

15.
Adherence epitopes of Mycoplasma genitalium adhesin.   总被引:2,自引:0,他引:2  
The adherence-mediating sites of the 153 kDa adhesin of Mycoplasma genitalium (MgPa-protein) were characterized at the amino acid sequence level using six monoclonal anti-MgPa antibodies which showed adherence-inhibiting activity. For characterization of the regions to which antibody bound, three segments of the adhesin (N-terminal region, a D1-domain located approximately in the middle of the molecule and a D2-domain located near to the C-terminus) were synthesized as overlapping octapeptides. These regions were chosen in analogy to the three domains of Mycoplasma pneumoniae that are involved in the adhesion process. Whereas two monoclonal antibodies (mAb 5B11 and mAb 6F3) bound exclusively to an epitope in the N-region, mAb 3B7 and mAb 6A2 reacted with two distinct epitopes of the D2-domain only. Binding to short synthetic peptides of different regions was analysed for mAb 3A12 (N-region and D1-region) and mAb 2B6 (N-region and D2-region). Close proximity of the N-region and the D2-region in the native MgPa-protein of M. genitalium was indicated in a competitive ELISA test, using freshly harvested M. genitalium cells. Epitope mapping and competition experiments with monoclonal anti-MgPa antibodies revealed interesting differences in the adherence-mediating sites of MgPa and the adhesin (P1-protein) of M. pneumoniae. Whereas a three-dimensional arrangement of protein loops is suggested for both native adhesins, the MgPa-protein and the P1-protein adherence-mediating epitopes are located in non-homologous regions of these two related proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Integrin alpha(IIb)beta(3), a platelet fibrinogen receptor, is critically involved in thrombosis and hemostasis. However, how ligands interact with alpha(IIb)beta(3) has been controversial. Ligand-mimetic anti-alpha(IIb)beta(3) antibodies (PAC-1, LJ-CP3, and OP-G2) contain the RGD-like RYD sequence in their CDR3 in the heavy chain and have structural and functional similarities to native ligands. We have located binding sites for ligand-mimetic antibodies in alpha(IIb) and beta(3) using human-to-mouse chimeras, which we expect to maintain functional integrity of alpha(IIb)beta(3). Here we report that these antibodies recognize several discontinuous binding sites in both the alpha(IIb) and beta(3) subunits; these binding sites are located in residues 156-162 and 229-230 of alpha(IIb) and residues 179-183 of beta(3). In contrast, several nonligand-mimetic antibodies (e.g. 7E3) recognize single epitopes in either subunit. Thus, binding to several discontinuous sites in both subunits is unique to ligand-mimetic antibodies. Interestingly, these binding sites overlap with several (but not all) of the sequences that have been reported to be critical for fibrinogen binding (e.g. N-terminal repeats 2-3 but not repeats 4-7, of alpha(IIb)). These results suggest that ligand-mimetic antibodies and probably native ligands may make direct contact with these discontinuous binding sites in both subunits, which may constitute a ligand-binding pocket.  相似文献   

17.
A peptide containing 2 seryl residues, (1)Leu(2)Ser(3)Tyr(4)Arg(5)Aly(6)Tyr(7)Ser(8)Leu, was chemically synthesized and used as a substrate for phosphorylase kinase and cyclic AMP-dependent protein kinase. The sequence, TryArgGlyTyr, makes up a beta turn in the native protein. Phosphorylase kinase was found to phosphorylate specifically seryl residue2 and protein kinase seryl residue7. Km and Vmax values were obtained and compared with natural substrates. The differences in the specificity of the two enzymes might be explained by a different requirement for organized structure. As a working hypothesis, it is suggested the results could be explained if the two enzymes interacted with seryl residues at different sides of a beta turn.  相似文献   

18.
Two fused proteins of dimeric arginine kinase (AK) from sea cucumber and dimeric creatine kinase (CK) from rabbit muscle, named AK-CK and CK-AK, were obtained through the expression of fused AK and CK genes. Both AK-CK and CK-AK had about 50% AK activity and about 2-fold K m values for arginine of native AK, as well as about 50% CK activity and about 2-fold K m values for creatine of native CK. This indicated that both AK and CK moieties are fully active in the two fused proteins. The structures of AK, CK, AK-CK, and CK-AK were compared by collecting data of far-UV circular dichroism, intrinsic fluorescence, 1-anilinonaphthalene-8-sulfonate binding fluorescence, and size-exclusion chromatography. The results indicated that dimeric AK and CK differed in the maximum emission wavelength, the exposure extent of hydrophobic surfaces, and molecular size, though they have a close evolutionary relationship. The structure and thermodynamic stability of AK, CK, AK-CK, and CK-AK were compared by guanidine hydrochloride (GdnHCl) titration. Dimeric AK was more dependent on the cooperation of two subunits than CK according to the analysis of residual AK or CK activity with GdnHCl concentration increase. Additionally, AK and CK had different denaturation curves induced by GdnHCl, but almost the same thermodynamic stability. The two fused proteins, AK-CK and CK-AK, had similar secondary structure, tertiary structure, molecular size, structure, and thermodynamic stability, which indicated that the expression order of AK and CK genes might have little effect on the characteristics of the fused proteins and might further verify the close relationship of dimeric AK and CK. Published in Russion in Biokhimiya, 2006, Vol. 71, No. 9, pp. 1208–1214.  相似文献   

19.
Monoclonal antibodies raised against canine cardiac sarcoplasmic reticulum phospholamban were used to study the structure-function relationship between phospholamban and the sarcoplasmic reticulum (SR) (Ca(2+)-Mg2+)-ATPase (Suzuki, T., and Wang, J. H. (1986) J. Biol. Chem. 261, 7018-7023). Additional monoclonal antibodies are characterized further. When five of these monoclonal antibodies were assessed for their ability to affect SR Ca2+ uptake three of these antibodies had no effect on SR Ca2+ uptake, whereas the other two monoclonals were able to stimulate SR Ca2+ uptake to levels similar to those caused by phosphorylation of phospholamban at different calcium concentrations. Using synthetic peptides corresponding to various portions of phospholamban in a competitive binding assay, it was possible to map the epitope site of monoclonals which stimulate the (Ca(2+)-Mg2+)-ATPase activity to phospholamban residues 7-16. These results implicate phospholamban residues 7-16 in the regulation of the (Ca(2+)-Mg2+)-ATPase.  相似文献   

20.
Prothymosin alpha (ProT alpha) is a 12.5 kDa acidic polypeptide that is considered to have a nuclear function related to cell proliferation. Inspection of its amino acid sequence revealed the presence of sequences that may serve as targets for phosphorylation by casein kinase-2 (CK-2). ProT alpha isolated from calf thymocytes was phosphorylated in vitro by CK-2. The phosphorylation sites are Ser and Thr residues located among the first 14 amino acid residues in the ProT alpha sequence. Another site that is theoretically suitable for phosphorylation by CK-2, at the C-terminus of the polypeptide, is not, in fact, phosphorylated. Thymosin alpha 1 (T alpha 1), a peptide whose sequence corresponds to the first 28 amino acids of ProT alpha, is also phosphorylated by CK-2 at the same phosphorylation sites as ProT alpha. In cultured splenic lymphocytes ProT alpha was phosphorylated at Thr residues located at positions 7, 12 and/or 13. Based on these observations we conclude that CK-2, or another cellular kinase with similar sequence specificity, is responsible for phosphorylation of ProT alpha in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号