首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
2.
The suppression of tension development by orthovanadate (Vi) was studied in mechanical experiments and by measuring the binding of radioactive Vi and nucleotides to glycerol-extracted rabbit muscle fibers. During active contractions, Vi bound to the cross-bridges and suppressed tension with an apparent second-order rate constant of 1.34 X 10(3) M-1s-1. The half-saturation concentration for tension suppression was 94 microM Vi. The incubation of fibers in Vi relaxing or rigor solutions prior to initiation of active contractions had little effect on the initial rise of active tension. The addition of adenosine diphosphate (ADP) and Vi to fibers in rigor did not cause relaxation. Suppression of tension only developed during cross-bridge cycling. After slow relaxation from rigor in 1 mM Vi and low (50 microM) MgATP concentration (0 Ca2+), radioactive Vi and ADP were trapped within the fiber. This finding indicated the formation of a stable myosin X ADP X Vi complex, as has been reported in biochemical experiments with isolated myosin. Vi and ADP trapped within the fibers were released only by subsequent cross-bridge attachment. Vi and ADP were preferentially trapped under conditions of cross-bridge cycling in the presence of ATP rather than in relaxed fibers or in rigor with ADP. These results indicate that in the normal cross-bridge cycle, inorganic phosphate (Pi) is released from actomyosin before ADP. The resulting actomyosin X ADP intermediate can bind Vi and Pi. This intermediate probably supports force. Vi behaves as a close analogue of Pi in muscle fibers, as it does with isolated actomyosin.  相似文献   

3.
Myosin produces force in a cyclic interaction, which involves alternate tight binding to actin and to ATP. We have investigated the energetics associated with force production by measuring the force generated by skinned muscle fibers as the strength of the actomyosin bond is changed. We varied the strength of the actomyosin bond by addition of a polymer that promotes protein-protein association or by changing temperature or ionic strength. We estimated the free energy available to generate force by measuring isometric tension, as the free energy of the states that precede the working stroke are lowered with increasing phosphate. We found that the free energy available to generate force and the force per attached cross-bridge at low [Pi] were both proportional to the free energy available from the formation of the actomyosin bond. We conclude that the formation of the actomyosin bond is involved in providing the free energy driving the production of isometric tension and mechanical work. Because the binding of myosin to actin is an endothermic, entropically driven reaction, work must be performed by a "thermal ratchet" in which a thermal fluctuation in Brownian motion is captured by formation of the actomyosin bond.  相似文献   

4.
Biochemical schemes for the actomyosin ATPase cycle as well as the cooperative regulation of ATPase activity are incorporated into a model of the contractile process of intact muscle. This model is shown to describe accurately the tension developed by skinned muscle fibers in the absence of Ca. This work adds to the evidence that the extrapolation of results from purified protein systems to intact muscle may be valid. Extensions to the case of Ca-activated tensions are discussed.  相似文献   

5.
As tissues and organs are formed, they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interactions contribute to egg elongation remained unclear. Recent studies using live imaging have revealed two novel processes, global tissue rotation and oscillating basal actomyosin contractions, which have provided significant insight into how the two polarized protein networks cooperate to produce an elongated egg. This review summarizes the proteins involved in Drosophila egg elongation and how this recent work has contributed to our current understanding of how egg elongation is achieved.  相似文献   

6.
Julie Gates 《Fly》2012,6(4):213-227
As tissues and organs are formed, they acquire a specific shape that plays an integral role in their ability to function properly. A relatively simple system that has been used to examine how tissues and organs are shaped is the formation of an elongated Drosophila egg. While it has been known for some time that Drosophila egg elongation requires interactions between a polarized intracellular basal actin network and a polarized extracellular network of basal lamina proteins, how these interactions contribute to egg elongation remained unclear. Recent studies using live imaging have revealed two novel processes, global tissue rotation and oscillating basal actomyosin contractions, which have provided significant insight into how the two polarized protein networks cooperate to produce an elongated egg. This review summarizes the proteins involved in Drosophila egg elongation and how this recent work has contributed to our current understanding of how egg elongation is achieved.  相似文献   

7.
We have used polyethylene glycol (PEG) to perturb the actomyosin interaction in active skinned muscle fibers. PEG is known to potentiate protein-protein interactions, including the binding of myosin to actin. The addition of 5% w/v PEG (MW 300 or 4000) to active fibers increased fiber tension and decreased shortening velocity and ATPase activity, all by 25-40%. Variation in [ADP] or [ATP] showed that the addition of PEG had little effect on the dissociation of the cross-bridge at the end of the power stroke. Myosin complexed with ADP and the phosphate analog V(i) or AlF(4) binds weakly to actin and is an analog of a pre-power-stroke state. PEG substantially enhances binding of these states both in active fibers and in solution. Titration of force with increasing [P(i)] showed that PEG increased the free energy available to drive the power stroke by about the same amount as it increased the free energy available from the formation of the actomyosin bond. Thus PEG potentiates the binding of myosin to actin in active fibers, and it provides a method for enhancing populations of some states for structural or mechanical studies, particularly those of the normally weakly bound transient states that precede the power stroke.  相似文献   

8.
To identify regulatory mechanisms potentially involved in formation of actomyosin structures in smooth muscle cells, the influence of F-actin on smooth muscle myosin assembly was examined. In physiologically relevant buffers, AMPPNP binding to myosin caused transition to the soluble 10S myosin conformation due to trapping of nucleotide at the active sites. The resulting 10S myosin-AMPPNP complex was highly stable and thick filament assembly was suppressed. However, upon addition to F-actin, myosin readily assembled to form thick filaments. Furthermore, myosin assembly caused rearrangement of actin filament networks into actomyosin fibers composed of coaligned F-actin and myosin thick filaments. Severin-induced fragmentation of actin in actomyosin fibers resulted in immediate disassembly of myosin thick filaments, demonstrating that actin filaments were indispensable for mediating myosin assembly in the presence of AMPPNP. Actomyosin fibers also formed after addition of F-actin to nonphosphorylated 10S myosin monomers containing the products of ATP hydrolysis trapped at the active site. The resulting fibers were rapidly disassembled after addition of millimolar MgATP and consequent transition of myosin to the soluble 10S state. However, reassembly of myosin filaments in the presence of MgATP and F-actin could be induced by phosphorylation of myosin P-light chains, causing regeneration of actomyosin fiber bundles. The results indicate that actomyosin fibers can be spontaneously formed by F-actin-mediated assembly of smooth muscle myosin. Moreover, induction of actomyosin fibers by myosin light chain phosphorylation in the presence of actin filament networks provides a plausible hypothesis for contractile fiber assembly in situ.  相似文献   

9.
Cell cycle ends with cytokinesis that is the physical separation of a cell into two daughter cells. For faithful cytokinesis, cells integrate multiple processes, such as actomyosin ring formation, contraction and plasma membrane closure, into coherent responses. Linear actin assembly by formins is essential for formation and maintenance of actomyosin ring. Although budding yeast’s two formins, Bni1 and Bnr1, are known to switch their subcellular localization at the division site prior to cytokinesis, the underlying mechanisms were not completely understood. Here, we provide evidence showing that Bnr1 is dephosphorylated concomitant with its release from the division site. Impaired PP1/Glc7 activity delayed Bnr1 release and dephosphorylation, Bni1 recruitment and actomyosin ring formation at the division site. These results suggest the involvement of Glc7 in this regulation. Further, we identified Ref2 as the PP1 regulatory subunit responsible for this regulation. Taken together, Glc7 and Ref2 may have a role in actomyosin ring formation by modulating the localization of formins during cytokinesis.  相似文献   

10.
He L  Wang X  Tang HL  Montell DJ 《Nature cell biology》2010,12(12):1133-1142
Understanding how molecular dynamics leads to cellular behaviours that ultimately sculpt organs and tissues is a major challenge not only in basic developmental biology but also in tissue engineering and regenerative medicine. Here we use live imaging to show that the basal surfaces of Drosophila follicle cells undergo a series of directional, oscillating contractions driven by periodic myosin accumulation on a polarized actin network. Inhibition of the actomyosin contractions or their coupling to extracellular matrix (ECM) blocked elongation of the whole tissue, whereas enhancement of the contractions exaggerated it. Myosin accumulated in a periodic manner before each contraction and was regulated by the small GTPase Rho, its downstream kinase, ROCK, and cytosolic calcium. Disrupting the link between the actin cytoskeleton and the ECM decreased the amplitude and period of the contractions, whereas enhancing cell-ECM adhesion increased them. In contrast, disrupting cell-cell adhesions resulted in loss of the actin network. Our findings reveal a mechanism controlling organ shape and an experimental model for the study of the effects of oscillatory actomyosin activity within a coherent cell sheet.  相似文献   

11.
Orientation and mobility of acrylodan fluorescent probe specifically bound to caldesmon Cys580 incorporated into muscle ghost fibers decorated with myosin S1 and containing tropomyosin was studied in the presence or absence of MgADP, MgAMP-PNP, MgATPgammaS or MgATP. Modeling of various intermediate states of actomyosin has shown discrete changes in orientation and mobility of the dye dipoles which is the evidence for multistep changes in the structural changes of caldesmon during the ATPase hydrolysis cycle. It is suggested that S1 interaction with actin results in nucleotide-dependent displacement of the C-terminal part of caldesmon molecule and changes in its mobility. Thus inhibition of the actomyosin ATPase activity may be due to changes in caldesmon position on the thin filament and its interaction with actin. Our new findings described in the present paper as well as those published recently elsewhere might conciliate the two existing models of molecular mechanism of inhibition of the actomyosin ATPase by caldesmon.  相似文献   

12.
Both ADP production and tension have been measured in segments of chemically skinned fibers contracting at different Ca2+ concentrations. Full mechanical activation occurred between pCa 7.00 and pCa 6.50. The total ATPase was due to both actomyosin and non-actomyosin ATPase. Actomyosin ATPase was observed at pCa 7.09 without accompanying tension. The Ca2+ dependence of tension was steeper than actomyosin ATPase. This finding implies some rate constants of the mechano-chemical cycle are Ca2+ dependent. Non-actomyosin ATPase was measured in fibers stretched beyond overlap of the thick and thin filaments. Sarcoplasmic reticulum was isolated and sarcoplasmic reticulum activity was measured in vitro under the same conditions as the single-fiber experiments. Non-actomyosin ATPase in the single fibers was found to be small compared to maximally activated actomyosin ATPase but larger than the ATPase that could be attributed to sarcoplasmic reticulum activity.  相似文献   

13.
Caldesmon is known to inhibit the ATPase activity of actomyosin in a Ca(2+)-calmodulin-regulated manner. Although a nonmuscle isoform of caldesmon is widely expressed, its functional role has not yet been elucidated. We studied the effects of nonmuscle caldesmon on cellular contractility, actin cytoskeletal organization, and the formation of focal adhesions in fibroblasts. Transient transfection of nonmuscle caldesmon prevents myosin II-dependent cell contractility and induces a decrease in the number and size of tyrosine-phosphorylated focal adhesions. Expression of caldesmon interferes with Rho A-V14-mediated formation of focal adhesions and stress fibers as well as with formation of focal adhesions induced by microtubule disruption. This inhibitory effect depends on the actin- and myosin-binding regions of caldesmon, because a truncated variant lacking both of these regions is inactive. The effects of caldesmon are blocked by the ionophore A23187, thapsigargin, and membrane depolarization, presumably because of the ability of Ca(2+)-calmodulin or Ca(2+)-S100 proteins to antagonize the inhibitory function of caldesmon on actomyosin contraction. These results indicate a role for nonmuscle caldesmon in the physiological regulation of actomyosin contractility and adhesion-dependent signaling and further demonstrate the involvement of contractility in focal adhesion formation.  相似文献   

14.
Tensile forces generated by stress fibers drive signal transduction events at focal adhesions. Here, we report that stress fibers per se act as a platform for tension-induced activation of biochemical signals. The MAP kinase, ERK is activated on stress fibers in a myosin II-dependent manner. In myosin II-inhibited cells, uniaxial stretching of cell adhesion substrates restores ERK activation on stress fibers. By quantifying myosin II- or mechanical stretch-mediated tensile forces in individual stress fibers, we show that ERK activation on stress fibers correlates positively with tensile forces acting on the fibers, indicating stress fibers as a tension sensor in ERK activation. Myosin II-dependent ERK activation is also observed on actomyosin bundles connecting E-cadherin clusters, thus suggesting that actomyosin bundles, in general, work as a platform for tension-dependent ERK activation.  相似文献   

15.
The consumption of fibers is associated with many health benefits, such as a reduction of cardiovascular and gastrointestinal diseases, control of body weight, and prevention of diabetes. Despite the widespread use of fiber supplements such as capsules or tablets, there is an almost complete lack of information concerning the technological properties of functional fibers used in nutraceutical formulations. The aim of this work was to characterize the technological properties of citrus fibers necessary for their use as a processing aid in tableting. The results obtained showed that citrus fibers share many properties of other polysaccharides used as tableting excipients, such as thermal behavior and compaction mechanism, together with an appreciable tabletability. However, the most interesting properties resulted from their disintegration power. Citrus fibers behaved in a similar manner to the well-known super disintegrant croscarmellose sodium and resulted to be little susceptible to their concentration, to lubricant type, and lubricant concentration. Thus, this work supports the idea of a potential use of citrus fibers as “active” substances and processing aid in the tableting of nutraceutical products and also as functional excipient in pharmaceutical tablets formulation.  相似文献   

16.
Natural actomyosin, actin and myosin, have been pressurized at up to 150 MN/m2 for 1 h at 0 degrees C and examined 3-5 h later. Pressurization of myosin resulted in the formation of aggregates with a molecular weight approximately that expected for a dimer, whereas with F-actin depolymerization occurred. With actomyosin, a gel to sol transition was promoted. Viscosity and light-scattering measurements indicated that pressurization results in a large measure of disaggregation of actomyosin in solution. Pressurization of actomyosin resulted in a greater decrease in the calcium-sensitive, than in the calcium-independent, Mg2+ ATPase activity. The Ca2+ and K+-EDTA ATPase activities of myosin were inhibited to about the same extent.  相似文献   

17.
Structure-radical scavenging activity relationships of flavonoids   总被引:1,自引:0,他引:1  
Seyoum A  Asres K  El-Fiky FK 《Phytochemistry》2006,67(18):2058-2070
The objective of this work is to establish the structural requirements of flavonoids for appreciable radical-scavenging activity (RSA) and elucidate a comprehensive mechanism that can explain their activity. To this end, the RSA of 52 flavonoids against 2,2-diphenyl-1-picrylhydrazyl was determined. The relative change in energy (DeltaH(f)) associated with the formation of various flavonoidal and other phenolic radicals and also the spin distribution in these radicals were determined using computational programmes. By correlating experimental data with DeltaH(f), structural features that affect activity have been identified and considered in perspective. It was shown with compelling evidences that the RSA of flavonoids could be mapped to one of their ring systems, making it possible to study their RSA by dissecting their structures and designing representative simpler models. Consequently, hydroxytoluene units were demonstrated to successfully account for the RSA of flavonoids due to ring B and also to satisfactorily do so for activities due to ring A. Further, a comprehensive model for the radical scavenging reactions of flavonoids (and in general, phenolic compounds), which could account for hydrogen atom donation and the termination of aroxyl radicals, was proposed. Finally, prediction of structural features that could endow flavonoids with appreciable radical scavenging capability was made by considering the stability data and the ease of termination. In conclusion, the underlying molecular phenomena of the RSA of flavonoids could be explained by the ease of hydrogen atom abstraction and the ease of the termination of the flavonoidal aroxyl radicals.  相似文献   

18.
Cells change their form and function by assembling actin stress fibers at their base and exerting traction forces on their extracellular matrix (ECM) adhesions. Individual stress fibers are thought to be actively tensed by the action of actomyosin motors and to function as elastic cables that structurally reinforce the basal portion of the cytoskeleton; however, these principles have not been directly tested in living cells, and their significance for overall cell shape control is poorly understood. Here we combine a laser nanoscissor, traction force microscopy, and fluorescence photobleaching methods to confirm that stress fibers in living cells behave as viscoelastic cables that are tensed through the action of actomyosin motors, to quantify their retraction kinetics in situ, and to explore their contribution to overall mechanical stability of the cell and interconnected ECM. These studies reveal that viscoelastic recoil of individual stress fibers after laser severing is partially slowed by inhibition of Rho-associated kinase and virtually abolished by direct inhibition of myosin light chain kinase. Importantly, cells cultured on stiff ECM substrates can tolerate disruption of multiple stress fibers with negligible overall change in cell shape, whereas disruption of a single stress fiber in cells anchored to compliant ECM substrates compromises the entire cellular force balance, induces cytoskeletal rearrangements, and produces ECM retraction many microns away from the site of incision; this results in large-scale changes of cell shape (> 5% elongation). In addition to revealing fundamental insight into the mechanical properties and cell shape contributions of individual stress fibers and confirming that the ECM is effectively a physical extension of the cell and cytoskeleton, the technologies described here offer a novel approach to spatially map the cytoskeletal mechanics of living cells on the nanoscale.  相似文献   

19.
Changes in F-actin conformation in myosin-free single ghost fibers of rabbit skeletal muscle induced by the binding of skeletal and gizzard tropomyosin to F-actin were studied by measuring intrinsic tryptophan-polarized fluorescence of F-actin. It was found that skeletal and gizzard tropomyosin binding to F-actin initiate different conformational changes in actin filaments. Skeletal tropomyosin inhibits, while gizzard tropomyosin activates the Mg2+-ATPase activity of skeletal actomyosin. It is supposed that in muscle fibers tropomyosin modulates the ATPase activity of actomyosin via conformational changes in F-actin.  相似文献   

20.
Skeletal muscle generation of reactive oxygen species (ROS) is increased following contractile activity and these species interact with multiple signaling pathways to mediate adaptations to contractions. The sources and time course of the increase in ROS during contractions remain undefined. Confocal microscopy with specific fluorescent probes was used to compare the activities of superoxide in mitochondria and cytosol and the hydrogen peroxide content of the cytosol in isolated single mature skeletal muscle (flexor digitorum brevis) fibers prior to, during, and after electrically stimulated contractions. Superoxide in mitochondria and cytoplasm were assessed using MitoSox red and dihydroethidium (DHE) respectively. The product of superoxide with DHE, 2-hydroxyethidium (2-HE) was acutely increased in the fiber cytosol by contractions, whereas hydroxy-MitoSox showed a slow cumulative increase. Inhibition of nitric oxide synthases increased the contraction-induced formation of hydroxy-MitoSox only with no effect on 2-HE formation. These data indicate that the acute increases in cytosolic superoxide induced by contractions are not derived from mitochondria. Data also indicate that, in muscle mitochondria, nitric oxide (NO) reduces the availability of superoxide, but no effect of NO on cytosolic superoxide availability was detected. To determine the relationship of changes in superoxide to hydrogen peroxide, an alternative specific approach was used where fibers were transduced using an adeno-associated viral vector to express the hydrogen peroxide probe, HyPer within the cytoplasmic compartment. HyPer fluorescence was significantly increased in fibers following contractions, but surprisingly followed a relatively slow time course that did not appear directly related to cytosolic superoxide. These data demonstrate for the first time temporal and site specific differences in specific ROS that occur in skeletal muscle fibers during and after contractile activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号