共查询到20条相似文献,搜索用时 0 毫秒
1.
Harada K Takeuchi H Oike M Matsuda M Kanematsu T Yagisawa H Nakayama KI Maeda K Erneux C Hirata M 《Journal of cellular physiology》2005,202(2):422-433
PRIP-1 was isolated as a novel inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] binding protein with a domain organization similar to phospholipase C-delta1 (PLC-delta1) but lacking the enzymatic activity. Further studies revealed that the pleckstrin homology (PH) domain of PRIP-1 is the region responsible for binding Ins(1,4,5)P3. In this study we aimed to clarify the role of PRIP-1 at the physiological concentration in Ins(1,4,5)P3-mediated Ca2+ signaling, as we had previously used COS-1 cells overexpressing PRIP-1 (Takeuchi et al., 2000, Biochem J 349:357-368). For this purpose we employed PRIP-1 knock out (PRIP-1-/-) mice generated previously (Kanematsu et al., 2002, EMBO J 21:1004-1011). The increase in free Ca2+ concentration in response to purinergic receptor stimulation was lower in primary cultured cortical neurons prepared from PRIP-1-/- mice than in those from wild type mice. The relative amounts of [3H]Ins(1,4,5)P3 measured in neurons labeled with [3H]inositol was also lower in cells from PRIP-1-/- mice. In contrast, PLC activities in brain cortex samples from PRIP-1-/- mice were not different from those in the wild type mice, indicating that the hydrolysis of Ins(1,4,5)P3 is enhanced in cells from PRIP-1-/- mice. In vitro analyses revealed that type1 inositol polyphosphate 5-phosphatase physically interacted with a PH domain of PRIP-1 (PRIP-1PH) and its enzyme activity was inhibited by PRIP-1PH. However, physical interaction with these two proteins did not appear to be the reason for the inhibition of enzyme activity, indicating that binding of Ins(1,4,5)P3 to the PH domain prevented its hydrolyzation. Together, these results indicate that PRIP-1 plays an important role in regulating the Ins(1,4,5)P3-mediated Ca2+ signaling by modulating type1 inositol polyphosphate 5-phosphatase activity through binding to Ins(1,4,5)P3. 相似文献
2.
《Channels (Austin, Tex.)》2013,7(5):379-384
The Ins(1,4,5)P3 receptor acts as a central hub for Ca2+ signaling by integrating multiple signaling modalities into Ca2+ release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P3-dependent Ca2+ release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P3 receptor results in decreased Ins(1,4,5)P3-dependent Ca2+ release and lowers the Ins(1,4,5)P3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P3-dependent Ca2+ release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P3 receptor function. 相似文献
3.
Shirley Haun Lu Sun Satanay Hubrack David Yule Khaled Machaca 《Channels (Austin, Tex.)》2012,6(5):379-384
The Ins(1,4,5)P3 receptor acts as a central hub for Ca2+ signaling by integrating multiple signaling modalities into Ca2+ release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P3-dependent Ca2+ release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P3 receptor results in decreased Ins(1,4,5)P3-dependent Ca2+ release and lowers the Ins(1,4,5)P3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P3-dependent Ca2+ release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P3 receptor function. 相似文献
4.
OKA2 and CL-A significantly inhibit the ability of angiotensin II, ATP and vasopressin to raise [Ca2+]i in rat hepatocytes, with a partial inhibition of the initial spike, and a complete inhibition of the following plateau. In contrast, the [Ca2+]i response to thapsigargin, which releases intracellular calcium stores through a mechanism independent of inositol phosphates, is much less affected. The ability of angiotensin II to stimulate Ins(1,4,5)P3 production is also reduced by OKA, with kinetics consistent with the inhibited [Ca2+]i response. Since OKA and CL-A are potent and selective inhibitors of phosphoprotein phosphatases, these results provide further evidence that agonist-stimulated Ins(1,4,5)P3 signalling can be inhibited by protein phosphorylation. 相似文献
5.
Distinct binding sites for Ins(1,4,5)P3 and Ins(1,3,4,5)P4 in bovine parathyroid glands 总被引:1,自引:0,他引:1
P Enyedi E Brown G Williams 《Biochemical and biophysical research communications》1989,159(1):200-208
We utilized high specific activity, [32P]-labelled ligands to measure the binding of Ins(1,3,4,5)P4 and Ins(1,4,5)P3 to membranes prepared from bovine parathyroid glands. [32P]Ins(1,3,4,5)P4 bound rapidly and reversibly to parathyroid membranes, and the binding data could be fitted by the interaction of the ligand with two sites, one with Kd = 6.8 x 10(-9) M and Bmax = 26 fmol/mg protein and a second, lower affinity site, with Kd = 4.1 x 10(-7) M and Bmax = 400 fmol/mg protein. InsP5 was 10-20 fold less potent than InsP4, and Ins(1,3,4)P3 and Ins(1,4,5)P3 were nearly 1000-fold less potent in displacing [32P]Ins(1,3,4,5)P4. [32P]Ins(1,4,5)P3, on the other hand, bound to a single class of sites with Kd = 7.6 x 10(-9) M and Bmax = 34 fmol/mg. While the binding of [32P]Ins(1,4,5)P3 increased markedly on raising pH from 5 to 8, the binding of [32P]Ins(1,3,4,5)P4 decreased by 75% over this range of pH. Thus, [32P]-labelled Ins(1,3,4,5)P4 and Ins(1,4,5)P3 may be used to identify distinct binding sites which may represent physiologically relevant intracellular receptors for InsP3 and InsP4 in parathyroid cells. 相似文献
6.
7.
8.
Investigation of chemically synthesized inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] analogs has led to the isolation of a novel binding protein with a molecular size of 130 kDa, characterized as a molecule with similar domain organization to phospholipase C-d1 (PLC-d1) but lacking the enzymatic activity. An isoform of the molecule was subsequently identified, and these molecules have been named PRIP (PLC-related, but catalytically inactive protein), with the two isoforms named PRIP-1 and -2. Regarding its ability to bind Ins(1,4,5)P3 via the pleckstrin homology domain, the involvement of PRIP-1 in Ins(1,4,5)P3-mediated Ca2+ signaling was examined using COS-1 cells overexpressing PRIP-1 and cultured neurons prepared from PRIP-1 knock-out mice. Yeast two hybrid screening of a brain cDNA library using a unique N-terminus as bait identified GABARAP (GABAA receptor associated protein) and PP1 (protein phosphatase 1), which led us to examine the possible involvement of PRIP in GABAA receptor signaling. For this purpose PRIP knock-out mice were analyzed for GABAA receptor function in relation to the action of benzodiazepines from the electrophysiological and behavioral aspects. During the course of these experiments we found that PRIP also binds to the b-subunit of GABAA receptors and PP2A (protein phosphtase 2A). Here, we summarize how PRIP is involved in Ins(1,4,5)P3-mediated Ca2+ signaling and GABAA receptor signaling based on the characteristics of binding molecules. 相似文献
9.
10.
The Ins(1,4,5)P3 binding site of bovine adrenocortical microsomes: function and regulation. 总被引:2,自引:1,他引:1 下载免费PDF全文
An activity that inhibits deoxyuridine triphosphatase (dUTPase) has been partially purified from Drosophila melanogaster. The inhibitor has a sedimentation coefficient of 4.1 S and a subunit molecular mass of 61 kDa. Its expression is limited to early stages of development, similar to the pattern previously found for dUTPase. The inhibitor is unusually stable to heating and is insensitive to DNAse and RNAse treatment. On the other hand, inhibition is sensitive to digestion with proteinase K, indicating that a protein is required for activity. These results suggest that at least one form of regulation is exerted on Drosophila dUTPase that could allow a greater opportunity for the incorporation of uracil into DNA. 相似文献
11.
Irvine RF 《Nature reviews. Molecular cell biology》2003,4(7):586-590
This year marks the 20th birthday of the discovery of inositol-1,4,5-trisphosphate as a second messenger. The background to this discovery is a complex story that goes back more than 50 years and involves a large cast of characters, both chemical and human. 相似文献
12.
Thyrotropin-releasing hormone activates a [Ca2+]i-dependent K+ current in GH3 pituitary cells via Ins(1,4,5)P3-sensitive and Ins(1,4,5)P3-insensitive mechanisms. 总被引:2,自引:0,他引:2 下载免费PDF全文
The role of Ins(1,4,5)P3 in receptor-induced Ca2+ mobilization in pituitary cells was studied at the single-cell level. Experimental strategies were developed which allowed a comparative analysis of the effects of Ins(1,4,5)P3 with those of receptor activation under identical conditions. These include microfluorimetry as well as a novel technique which permits the controlled and rapid application of intracellular messenger molecules to individual cells. This latter approach is based on the tight-seal whole-cell recording (WCR) technique, and utilizes two patch-clamp micropipettes, one for electrical recording and the second for the controlled pressure injection. Ins(1,4,5)P3, when applied with this dual-WCR (DWCR) technique, leads rapidly to a marked rise in cytosolic free Ca2+ [( Ca2+]i) and a concomitant stimulation of Ca2(+)-activated K+ current; Ins(1,4,5)P3 can thus mimic the effects of thyrotropin-releasing hormone (TRH) in the same cells under identical conditions. In cells dialysed intracellularly with heparin, a potent antagonist of Ins(1,4,5)P3 action, the rapid response to extracellular stimulation with TRH was abolished, as were the effects of intracellular application of Ins(1,4,5)P3. Heparin, which abolished Ins(1,4,5)P3 action completely, blocked responses to TRH in some cells only partially, revealing that Ca2+ mobilization response to TRH is in part slower in onset than the response to Ins(1,4,5)P3. It is concluded (1) that Ins(1,4,5)P3 is an essential element for the action of TRH, providing a rapid mechanism for Ca2+ mobilization induced by the releasing hormone and (2) that TRH action in mobilizing intracellular Ca2+ is sustained by a slower mechanism which is independent of Ins(1,4,5)P3. 相似文献
13.
Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness 总被引:7,自引:0,他引:7
Connexins are membrane proteins that assemble into gap-junction channels and are responsible for direct, electrical and metabolic coupling between connected cells. Here we describe an investigation of the properties of a recombinantly expressed recessive mutant of connexin 26 (Cx26), the V84L mutant, associated with deafness. Unlike other Cx26 mutations, V84L affects neither intracellular sorting nor electrical coupling, but specifically reduces permeability to the Ca(2+)-mobilizing messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)). Both the permeability to Lucifer Yellow and the unitary channel conductance of V84L-mutant channels are indistinguishable from those of the wild-type Cx26. Injection of Ins(1,4,5)P(3) into supporting cells of the rat organ of Corti, which abundantly express Cx26, ensues in a regenerative wave of Ca(2+) throughout the tissue. Blocking the gap junction communication abolishes wave propagation. We propose that the V84L mutation reduces metabolic coupling mediated by Ins(1,4,5)P(3) to an extent sufficient to impair the propagation of Ca(2+) waves and the formation of a functional syncytium. Our data provide the first demonstration of a specific defect of metabolic coupling and offer a mechanistic explanation for the pathogenesis of an inherited human disease. 相似文献
14.
The design and synthesis of dimeric versions of the intracellular signaling molecule d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] are reported. Ins(1,4,5)P(3) dimers in a range of sizes were constructed by conjugation of a partially protected 2-O-(2-aminoethyl)-Ins(1,4,5)P(3) intermediate with activated oligo- and poly(ethylene glycol) (PEG) tethers, to give benzyl-protected dimers with amide or carbamate linkages. After deprotection, the resulting water-soluble Ins(1,4,5)P(3) dimers were purified by ion-exchange chromatography. The interaction of the Ins(1,4,5)P(3) dimers with tetrameric Ins(1,4,5)P(3) receptors was explored, using equilibrium [(3)H]Ins(1,4,5)P(3)-binding to membranes from cerebellum, and (45)Ca(2+)-release from permeabilized hepatocytes. The results showed that dimers, even when they incorporate large PEG tethers, interact potently with Ins(1,4,5)P(3) receptors, and that the shorter dimers are more potent than Ins(1,4,5)P(3) itself. A very small dimer, consisting of two Ins(1,4,5)P(3) motifs joined by a short N,N'-diethylurea spacer, was synthesized. Preliminary studies of (45)Ca(2+) release from the intracellular stores of permeabilized hepatocytes showed this shortest dimer to be almost as potent as adenophostin A, the most potent Ins(1,4,5)P(3) receptor ligand known. Possible interpretations of this result are considered in relation to the recently disclosed X-ray crystal structure of the type 1 Ins(1,4,5)P(3) receptor core binding domain. 相似文献
15.
Windhorst S Blechner C Lin HY Elling C Nalaskowski M Kirchberger T Guse AH Mayr GW 《The Biochemical journal》2008,414(3):407-417
In the present study, effects of increased IP3K-A [Ins(1,4,5)P(3) 3-kinase-A] expression were analysed. H1299 cells overexpressing IP3K-A formed branching protrusions, and under three-dimensional culture conditions, they exhibited a motile fibroblast-like morphology. They lost the ability to form actin stress fibres and showed increased invasive migration in vitro. Furthermore, expression levels of the mesenchymal marker proteins vimentin and N-cadherin were increased. The enzymatic function of IP3K-A is to phosphorylate the calcium-mobilizing second messenger Ins(1,4,5)P(3) to (Ins(1,3,4,5)P(4). Accordingly, cells overexpressing IP3K-A showed reduced calcium release and altered concentrations of InsPs, with decreasing concentrations of Ins(1,4,5)P(3), InsP(6) and Ins(1,2,3,4,5)P(5), and increasing concentrations of Ins(1,3,4,5)P(4). However, IP3K-A-induced effects on cell morphology do not seem to be dependent on enzyme activity, since a protein devoid of enzyme activity also induced the formation of branching protrusions. Therefore we propose that the morphological changes induced by IP3K-A are mediated by non-enzymatic activities of the protein. 相似文献
16.
The release of Ca2+ from intracellular stores is triggered by the second messenger inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3). The regulation of this process is critically important for cellular homeostasis. Ins(1,4,5)P3 is rapidly metabolised, either to inositol (1,4)-bisphosphate (Ins(1,4)P2) by inositol polyphosphate 5-phosphatases or to inositol (1,3,4,5)-tetrakisphosphate (Ins(1,3,4,5)P4) by one of a family of inositol (1,4,5)P3 3-kinases (IP3-3Ks). Three isoforms of IP3-3K have now been identified in mammals; they have a conserved C-terminal catalytic domain, but divergent N-termini. This review discusses the metabolism of Ins(1,4,5)P3, compares the IP3-3K isoforms and addresses potential mechanisms by which their activity might be regulated. 相似文献
17.
Metabolism of the biologically active inositol phosphates Ins(1,4,5)P3 and Ins(1,3,4,5)P4 by ovarian follicles of Xenopus laevis. 总被引:1,自引:0,他引:1 下载免费PDF全文
The metabolism of biologically active inositol phosphates in developed ovarian follicles from Xenopus laevis was investigated. Techniques used were microinjection of tracer into the intact oocyte coupled by gap junctions to follicle cells, as well as addition of tracer to homogenates of ovarian follicles and to homogenates of oocytes stripped of outer follicle-cell layers. Metabolism was similar to that previously described for other types of cell and tissue, with several unusual features. Homogenates of ovarian follicles were shown to contain an apparent 3'-phosphomonoesterase capable of converting [3H]Ins(1,3,4,5)P4 predominantly into a substance with h.p.l.c. elution characteristics of Ins(1,4,5)P3. In intact ovarian follicles, little Ins(1,4,5)P3 was formed but the esterase was activated by the phorbol ester activator of protein kinase C, PMA (phorbol 12-myristate 13-acetate; 60 nM), as well as by acetylcholine (200 microM). In follicle homogenates, this enzyme also appeared to be active in converting [3H]Ins(1,3,4)P3 into a substance eluting as Ins(1,4)P2. The apparent 3'-phosphomonoesterase activity was not inhibited by intracellular (or higher) levels of Mg2+. Although PMA activated this enzyme in intact oocytes relative to 5'-phosphomonoesterase activation, it did not enhance overall metabolism, in contrast with reports on other tissues. Compared with the processing of inositol phosphates injected into the intact follicle, homogenization in simulated intracellular medium appeared to alter the activity and/or accessibility of several enzymes. The metabolism of inositol phosphates appears to occur predominantly in the follicle cells surrounding the oocyte, as collagenase treatment followed by defolliculation greatly diminished the rates of metabolism of several inositol phosphates. The presence in Xenopus ovarian follicles of a 3'-phosphomonoesterase activated by protein kinase C in addition to the well-known 3'-kinase suggests that, by forming a reversible interconversion between Ins(1,4,5)P3 and Ins(1,3,4,5)P4, this tissue may have the potential to prolong stimulatory signals on binding of appropriate agonists to receptors. 相似文献
18.
Cruttwell C Bernard J Hilly M Nicolas V Tunwell RE Mauger JP 《Biology of the cell / under the auspices of the European Cell Biology Organization》2005,97(9):699-707
BACKGROUND INFORMATION: The uneven distribution of the Ins(1,4,5)P3R [Ins(1,4,5)P3 receptor] within the ER (endoplasmic reticulum) membrane generates spatially complex Ca2+ signals. The ER is a dynamic network, which allows the rapid diffusion of membrane proteins from one part of the cell to another. However, little is known about the localization and the dynamics of the Ins(1,4,5)P3R in the ER of living cells. We have used a MDCK (Madin-Darby canine kidney) clone stably expressing the Ins(1,4,5)P3R1-GFP (where GFP stands for green fluorescent protein) to investigate the effect of cell polarity on the lateral mobility of the Ins(1,4,5)P3R. RESULTS: In non-confluent MDCK cells, the chimaera is homogeneously distributed throughout the ER and the nuclear envelope. FRAP (fluorescence recovery after photobleaching) experiments showed that the receptor can move freely in the ER with a diffusion constant (D=0.01 microm2/s) approx. ten times lower than other ER membrane proteins. In confluent polarized cells, two populations of receptor can be defined: one population is distributed in the cytoplasm and is mobile but with a slower diffusion constant (D=0.004 microm2/s) compared with non-confluent cells, whereas the other population is concentrated at the periphery of the cells and is apparently immobile. CONCLUSIONS: The observed differences in the mobility of the Ins(1,4,5)P3R are most probably due to its interactions with stable protein complexes that form at the periphery of the polarized cells. 相似文献
19.
20.
Riley AM Dozol H Spiess B Potter BV 《Biochemical and biophysical research communications》2004,318(2):444-452
2-O-(2-Aminoethyl)-Ins(1,4,5)P(3), (5), a novel derivative of the Ca(2+)-mobilising second messenger d-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)], was synthesised from myo-inositol. 5 was found to be a potent mobiliser of intracellular Ca(2+), and an Ins(1,4,5)P(3) affinity matrix synthesised from 5 was effective at selectively binding N-terminal fragments of the Ins(1,4,5)P(3) receptor containing the intact Ins(1,4,5)P(3) binding site. The microprotonation scheme for 5 was resolved and the related constants were determined in comparison with Ins(1,4,5)P(3) and another reactive Ins(1,4,5)P(3) analogue 1-O-(2-aminoethyl-1-phospho)-Ins(4,5)P(2), (2a), by potentiometric and NMR titration methods. The (31)P and (1)H NMR titration curves for compound 5 and Ins(1,4,5)P(3) are remarkably close, indicating analogous acid-base properties and intramolecular interactions for the two compounds. The 1-phosphate-modified Ins(1,4,5)P(3) derivative 2a, on the contrary, behaves as a bisphosphorylated rather than a trisphosphorylated inositol. Thus, 5 is a new reactive Ins(1,4,5)P(3) analogue of considerable potential for investigation of the chemical biology of Ins(1,4,5)P(3)-mediated cellular signalling. 相似文献