首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Day, L. E. (Chas. Pfizer & Co., Inc., Groton, Conn.). Tetracycline inhibition of cell-free protein synthesis. I. Binding of tetracycline to components of the system. J. Bacteriol. 91:1917-1923. 1966.-Tetracycline, an inhibitor of cell-free protein synthesis, effected the dissociation of Escherichia coli 100S ribosomes to 70S particles in vivo and in vitro, but was not observed to mediate the further degradation of these particles. The antibiotic was bound by both 50S (Svedberg) and 30S subunits of 70S ribosomes and also by E. coli soluble RNA (sRNA), polyuridylic acid (poly U), and polyadenylic acid (poly A). The binding to ribosomal subunits was higher at 5 x 10(-4)m Mg(++) than at 10(-2)m Mg(++). The binding to polynucleotide chains was highest when Mg(++) was not added to the reaction mixture.  相似文献   

4.
5.
The effect of 7-methylguanosine 5'-monophosphate (pm7G) on mRNA translation was examined in the wheat germ and rabbit reticulocyte cell-free systems. Differences between the two cell extracts with respect to inhibition of translation by pm7G can be attributed to different conditions commonly used for in vitro protein synthesis. Inhibition of globin mRNA translation by pm7G is strongly influenced by the concentration of potassium salt and to a lesser extent by incubation temperature. The effectiveness of the inhibitor increases with potassium salt concentration and diminishes with increasing temperature. Translation is inhibited by pm7G at physiological K+ concentration in both cell-free systems in that only the rate of binding of mRNA to ribosomes is affected by the inhibitor, not the extent of binding. Translation of different capped mRNAs is affected differently by pm7G, but this appears to be property of the mRNA rather than the translation system. These results indicate that while the 5'-terminal cap structure may be more important for translation of some mRNA's than others, this structure functions in translation of capped mRNAs in all types of cells.  相似文献   

6.
7.
A new procedure for the synthesis of double stranded cDNA, based upon release of mRNA by "in vitro" translation, was used to clone type IV collagen. Collagen synthesizing polysomes selectively isolated from a mouse parietal yolk sac carcinoma (PYS-2) were used for translation in an heterologous cell-free system. Translation products were collagenase-sensitive and displayed an electrophoretic mobility correspondent to type IV collagen. Translation released mRNA was employed to construct a 100 base pairs long cDNA clone which hybridized to a 7,800 nucleotides long mRNA. Peptides synthesized by "in vitro" translation of hybrid selected mRNA displayed an electrophoretic mobility compatible with that of alpha 1 (IV) collagen, were sensitive to collagenase and were immunoprecipitated by anti-type IV collagen antibody.  相似文献   

8.
We tested the effects of a series of synthetic oligonucleotides (hybridons) complementary to the 5' noncoding and coding regions of rabbit beta-globin mRNA on endogenous protein synthesis in a rabbit reticulocyte cell-free translation system. With highly purified hybridons inhibition was completely specific for beta-globin. The sites most sensitive to inhibition are the beginning of the 5' noncoding region and a sequence including the initiation codon and several upstream bases. The region between these was relatively insensitive to inhibition. The sites of maximum sensitivity coincide with known protein binding sites, suggesting that hybridons exert their effects in part by blocking the binding of proteins required for translation. Their effectiveness seems related to the ease with which they are displaced by ribosomes.  相似文献   

9.
10.
Gene 6 mRNA of Bacillus subtilis phage phi 29 is inefficiently translated under standard in vitro conditions by Escherichia coli, while it is efficiently translated by the in vitro system derived from B. subtilis. This is a rare example of the inability of E. coli to translate mRNA translated by B. subtilis. The ionic condition in the translation systems was the key component in the differential recognition of the gene 6 message by E. coli and B. subtilis ribosomes. Its translation by E. coli ribosomes was preferentially inhibited by moderate levels of KCl, while its translation by B. subtilis ribosomes was unaffected by these concentrations of salt. This preferential inhibition with E. coli ribosomes was observed in vitro as well as in vivo. While not influencing the general phenomenon of preferential inhibition, anion-specific effects were observed in overall protein synthesis. Glutamate and acetate promoted efficient synthesis over a broad range of concentrations, whereas chloride was inhibitory at all concentrations tested.  相似文献   

11.
12.
The potential use of peptide nucleic acid (PNA) as a sequence-specific inhibitor of RNA translation is investigated in this report. Three different regions of the PML/RARalpha oncogene, including two AUG potential start codons, were studied as targets of translation inhibition by antisense PNA in a cell-free system. A PNA targeted to the second AUG start codon, which was shown previously to be able to suppress in vitro translation from that site completely, was used alone or in combination with another PNA directed to the first AUG, and a third PNA within the 5'-untranslated region (5'-UTR) of mRNA. When used alone, no PNA was able to completely block the synthesis of the PML/RARalpha protein. The 5'-UTR PNA was the most potent translation inhibitor when used as single agent. However, a near complete (>/=90%) specific inhibition of the PML/RARalpha gene was obtained when the three PNAs were used in combination, thus obtaining an additive antisense effect.  相似文献   

13.
Insulin modulation of apolipoprotein B gene expression was studied at the translational level by the use of a cell-free translation system from a hepatoma cell-line, HepG2. Extracts of HepG2 cells lysed with lysolecithin were found to have high in vitro protein synthesizing activity utilizing endogenous mRNA. The level of peptide chain initiation was high, as suggested by a significant inhibition of translation by edeine. The translation products of endogenous mRNA in HepG2 cell-free lysate were probed with anti-apolipoprotein B antibodies to investigate its synthesis. A 550 kilodalton (kDa) polypeptide was selected by a polyclonal antibody, as well as a monoclonal antibody, against the C-terminal end of apolipoprotein B molecule. This in vitro synthesized polypeptide was also found to compare well in size with the in vivo product. The HepG2 lysate was also shown to efficiently synthesize in vitro a number of other proteins including albumin, apolipoprotein E, apolipoprotein A1, and actin. The in vitro synthesis of polypeptides as large as 500 kDa was unexpected and has not previously been demonstrated in a cell-free system. The HepG2 translation system was used to investigate the effect of insulin on the in vitro translation of apolipoprotein B. Lysates prepared from HepG2 cells treated with insulin were found to have lower translational activity (by an average of 52.3%) for apolipoprotein B compared with lysates from control untreated cells. In vitro synthesis of actin and apolipoprotein E were unaffected under these conditions. The insulin-stimulated decline in in vitro apolipoprotein B synthesis was not due to a change in apolipoprotein B mRNA levels as determined by slot- and Northern-blot analyses, suggesting that the inhibitory effect of insulin may be exerted partly at the level of apolipoprotein B mRNA translation.  相似文献   

14.
15.
A new family of small cytoplasmic RNA species (scRNAs) was found to be associated with human term-placental free messenger ribonucleoprotein particles (mRNPs). Placental scRNAs strongly inhibit translation of both homologous and heterologous mRNAs in a cell-free rabbit reticulocyte system. scRNAs could be resolved into at least four different RNA species. One of the RNA molecules, scRNA species 1, was the most potent protein synthesis inhibitor found among the placental scRNAs. The nucleotide sequence of the scRNA species 1 was determined. In spite of its short length, scRNA species 1 still exhibited a very strong inhibitory effect on the in vitro protein synthesis. scRNAs were found to be complexed with proteins in the form of scRNPs. Proteins of these complexes enhanced the inhibitory effect of scRNAs on in vitro translation. Experiments provided evidence that inhibition of in vitro protein synthesis by the scRNAs is not dependent upon mRNA concentration. However, inhibition can be overcome by increasing the ratio lysate/scRNAs, thus suggesting that scRNAs act on some essential component of the cell-free system. The degree of inhibition is decreased when scRNAs are added after the start of translation, suggesting that scRNAs (or scRNPs) interfere with the initiation stage of translation, probably acting on an initiation factor(s). Placental scRNAs are unique in their size, being smaller than other known scRNAs. Their association with free cytoplasmic repressed mRNPs in human placenta suggests that scRNAs play a role in the regulation of mRNP metabolism and, consequently, in the control of mRNA translation.  相似文献   

16.
Abstract: Protein synthesis in the brain is known to be affected by a wide range of treatments. The detailed analysis of the mechanisms that are involved would be facilitated by the development of cell-free translation systems derived from brain tissue. To date, brain cell-free systems have not been fully characterized to demonstrate a capacity for initiation of translation. The following criteria were utilized to demonstrate that a cell-free protein synthesis system derived from rabbit brain was capable of initiation in vitro : (a) sensitivity of cell-free translation to the initiation inhibitor aurintricarboxylic acid (ATA); (b) binding of [35S]Met-tRNAf to 40S and 80S initiation complexes; (c) incorporation of labeled initiation methionine into high-molecular-weight proteins; and (d) the association of labeled exogenous mRNA with polysomes. The optimum conditions for amino acid incorporation in this system were 4 mM-Mg2+, 140 mM-K+, and pH 7.55. Incorporation was dependent on the addition of ATP, GTP, and an energy-generating system. Cell-free protein synthesis reflected the normal process, since a similar spectrum of proteins was synthesized in vitro and in vivo. This initiating cell-free translation system should have wide application in the analysis of the mechanisms whereby various treatments affect protein synthesis in the brain.  相似文献   

17.
《Biochimie》1987,69(8):797-802
Baciphelacin an antibiotic produced by Bacillus thiaminolyticus was a potent inhibitor of protein synthesis in HeLa cells and other mammalian cell lines. It had no effect on DNA or RNA synthesis. Concentrations of baciphelacin around 10−7 M inhibited protein synthesis by 50% in intact cells. The antibiotic had no effect on protein synthesis in Saccharomyces cerevisiae or Escherichia coli, but inhibited the protozoan Trypanosoma brucei. In vitro protein synthesis in a rabbit reticulocyte cell-free system was blocked by baciphelacin. However, translation of globin mRNA in a wheat cell-free system was not affected by this antibiotic. Baciphelacin had no activity against a number of cell-free systems used to measure different steps of translation, including binding of substrates to the ribosome, peptide bond formation and polyphenylalanine synthesis. Therefore, it is assumed that it affects the initiation of translation or the charging of tRNA. Finally, the inhibition of protein synthesis by compounds structurally related to baciphelacin was tested and their effects compared to baciphelacin.  相似文献   

18.
Methylglyoxal was a weak inhibitor of translation in the reticulocyte-lysate cell-free system and it did not display cap-dependent inhibition. A similar inhibition was obtained in a wheat-germ cell-free system that displayed extensive cap-dependent inhibition with the cap analogue 7-methylguanosine phosphate. These results show that the chemical reaction of methyl-glyoxat with 7-methylguanosine is not the mechanism for the inhibition of protein synthesis by methylglyoxal and that methylglyoxat is a weak general inhibitor of translation.  相似文献   

19.
20.
Globin mRNA, translated in a Saccharomyces cerevisiae cell-free protein synthesizing system prepared from a [psi+ rho+] strain, primarily directed the synthesis of alpha- and beta-globin. A third globin mRNA-specific polypeptide was also synthesized, representing approximately 10% of the total translation products. This polypeptide (beta') was synthesized by translational read-through of the beta- globin mRNA UGA terminator and was mediated primarily by an endogenous tRNA coded for by the mitochondria. This mitochondrial tRNA, when charged, could be preferentially bound, in high salt, to benzoylated DEAE-cellulose, a characteristic of a tRNATrp. The synthesis of beta- mediated by this mitochondrial tRNATrp was significantly reduced when the translation system was prepared from an isogenic [psi-] strain. Evidence for a nuclear-coded tRNA, also able to suppress the beta-globin mRNA UGA terminator in [psi+] but not [psi-] lysates, was also obtained. The presence of these endogenous UGA suppressor activities in the yeast cell-free system should allow successful in vitro translation of mitochondrial mRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号