首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
European Black Poplar (Populus nigra) is considered a rare and endangered tree species because of severe reduction of its natural riverine habitat and potential hybridisation with the related non-indigenous taxa P. deltoides and P. x canadensis. As it is difficult to distinguish these taxa solely based on their morphology, we applied a PCR-based assay with an easy-to-use and robust molecular marker set (cpDNA trnL-trnF/RsaI RFLP, nDNA win3 and nDNA POPX/MspI RFLP) in order to identify pure P. nigra. Different plant tissues could be used for fast and standardised DNA extraction. The application of the three marker types was tested on a number of different Populus taxa, and they were also used for the verification of pure P. nigra in a sample of 304 putative P. nigra individuals from Switzerland. Cross-checking of the DNA data with those using a traditional allozyme approach resulted in complete agreement. The availability of molecular identification methods is an important prerequisite for the conservation of European Black Poplar, because pure, non-introgressed plant material can then be used in restoration projects of European floodplains.  相似文献   

2.
It is known that various poplar species and cultivated poplar hybrids have the potential to interbreed and produce fertile offspring. Conservation strategies for the genetic resources of the endangered Eurasian black poplar (Populus nigra L.) thus rely on a monitoring which enables the identification and verification of the pure species status. At the same time, the risk of hybrid dispersal and introgressive gene flow has to be estimated. In the present study a combination of two molecular markers, one from chloroplast DNA and the other from nuclear DNA, was applied to evaluate a large P. nigra population on the Elbe River. Hybrid clones of P. × canadensis are scattered within this population and also occur as plantations in the surrounding landscape. By means of the DNA markers the taxonomic status of 208 adult trees in the population and 140 young poplars along the riverbank was monitored. From the analysed young poplars, almost 20 percent were found to exhibit at least one of the two P. deltoides or P. × canadensis diagnostic alleles or genotypes, respectively. Possible vegetative spreads of F1 hybrids and precedent mating scenarios are discussed. Most interestingly we found clear evidence for a small number of backcross hybrids where P.  × canadensis acted as pollen donor. This case had long been debated and thought to be less probable, so far.  相似文献   

3.
Hybridization and introgression via interspecific gene flow are common processes in the plant kingdom. The effectiveness of these processes is governed by the strengths of multiple zygotic barriers. These barriers have often been quantified in artificial settings using laborious and time‐consuming hand‐pollination experiments, but their quantification is nonexistent in the landscape. In this study, we utilized gene flow data within a spatially explicit simulation to assess the strengths of zygotic barriers. Our model system consisted of Populus nigra and its hybrid, P. × canadensis, which interbreed under natural conditions. The study population was located in the floodplain of the Eder River in central Germany. Pollen‐mediated introgression rates from hybrid males into the seeds of individual female trees were used as the target pattern using an inverse modeling approach. Simulations that treated pollen from both taxa equally revealed a large discrepancy between the observed and modeled rates of introgression for both taxa. The discrepancy was reduced by introducing a zygotic barrier against the pollen from the hybrid males. The best model outcome values indicated comparably strong zygotic barriers acting against pollen‐mediated introgressive gene flow into the two parental taxa, P. nigra and P. × canadensis. The sensitivity of our model was tested by applying different dispersal functions. Four common probability density functions were used along with a pollen dispersal function that had previously been fitted to gene flow data from the same dataset. The best barrier value was almost independent of the dispersal functions used here. Moreover, it was within the range previously determined in hand‐pollination‐based investigations, validating our model. These data indicate that the inverse modeling approach is a powerful method for quantifying hidden processes, and we discuss its use as a valuable tool for generating new insights into plant mating systems that are relevant to evolutionary biology and risk analyses in conservation efforts.  相似文献   

4.
Introgression has been considered to be one of main factors leading to phylogenetic incongruence among different datasets at lower taxonomic levels. In the plants of Pinaceae, the mtDNA, cpDNA, and nuclear DNA (nrDNA) may have different evolutionary histories through introgression because they are inherited maternally, paternally and biparentally, respectively. We compared mtDNA, cpDNA, and two low-copy nrDNA phylogenetic trees in the genus Pinus subgenus Strobus, in order to detect unknown past introgression events in this group. nrDNA trees were mostly congruent with the cpDNA tree, and supported the recent sectional and subsectional classification system. In contrast, mtDNA trees split the members of sect. Quinquefoliae into two groups that were not observed in the other gene trees. The factors constituting incongruence may be divided into the following two categories: the different splits within subsect. Strobus, and the non-monophyly of subsect. Gerardianae. The former was hypothesized to have been caused by the past introgression of cpDNA, mtDNA or both between Eurasian and North American species through Beringia. The latter was likely caused by the chimeric structure of the mtDNA sequence of P. bungeana, which might have originated through past hybridization, or through a horizontal transfer event and subsequent recombination. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
DNA sequence, copy number, expression and phylogenetic relevance of the psbA gene from the abundant marine prokaryote P. marinus CCMP 1375 was analyzed. The 7 amino acids near the C-terminus missing in higher plant and in Prochlorothrix hollandica D1 proteins are present in the derived amino acid sequence. P. marinus contains only a single psbA gene. Thus, this organism lacks the ability to adapt its photosystem II by replacement of one type of D1 by another, as several cyanobacteria do. Phylogenetic trees suggested the D1-1 iso-form from Synechococcus PCC 7942 as the next related D1 protein and place P. Marinus separately from Prochlorothrix hollandica among the cyanobacteria.  相似文献   

6.
The successful transfer of a marker gene (hpt gene) from Brassica nigra into B. napus via direct gene transfer was demonstrated. Total DNA was isolated from a hygromycin-resistant callus line, which contained three to five copies of the hpt gene. This line had been produced via direct gene transfer with the hygromycin resistance-conferring plasmid pGL2. The treatment of B. napus protoplasts with genomic DNA of B. nigra (HygR) resulted in relative transformation frequencies of 0.1–0.4%. Similar transformation rates were obtained in direct gene transfer experiments using B. napus protoplasts and plasmid pGL2.  相似文献   

7.
Restriction site variation in chloroplast DNA and nuclear ribosomal DNA was examined in 16 accessions from the Salicaceae comprising ten species of Populus and one outgroup species of Salix. Forty-nine restriction site mutations in the chloroplast DNAs were used to generate one most parsimonious phylogenetic tree. This tree indicates that all varieties of P. nigra (black poplars of sect. Aigeiros) have a chloroplast genome, maternally inherited, derived from the clade including the white poplars (P. alba and segregate species of sect. Populus) and divergent from the American cottonwoods of their own section. Twenty-one restriction site mutations in the nuclear ribosomal DNAs generated a single most parsimonious phylogenetic tree that indicates that the nuclear genome ofP. nigra is distinct from both the white poplars and American cottonwoods. The incongruity of these independent molecular phylogenies provides evidence for an unusual origin of the black poplars. Populus alba or its immediate ancestor acted as the maternal parent in a hybridization event with the paternal lineage of P. nigra. Subsequent backcrosses to the paternal species gave rise to the extant P. nigra with a chloroplast genome of P. alba and the nuclear genome of the paternal species. These hybridization and introgression events must have pre-dated the divergence of the black poplar varieties. The biphyletic nature of the P. nigra genomes suggests that dependency on one class of molecular or morphological markers or the merging of the two kinds of data sets to derive accurate estimates of true phylogenies could be misleading in plants.  相似文献   

8.
Summary The cloning of white spruce (Picea glauca) mitochondrial DNA homologous to the cytochrome oxidase II and ATPase genes of maize is described. These probes were used to define restriction fragment length polymorphisms which distinguish the white, Engelmann (P. engelmannii) and Sitka spruce (P. sitchensis) populations that occur in British Columbia. Analysis of progeny from crosses between the species revealed that mitochondrial DNA was maternally inherited in all cases (32 progeny from five independent crosses). The inheritance of chloroplast DNA was determined using a probe described previously; in this case, all progeny exhibited paternal inheritance (27 progeny from four crosses). Mitochondrial and chloroplast probes were used to test trees from zones of introgression between coastal (Sitka) and interior spruces (white and Engelmann). In most cases mitochondria and chloroplasts within individuals were contributed by different species. The data shows that there is a significant Sitka spruce component in trees east of the coastal watershed in British Columbia.  相似文献   

9.
Summary The objective of this project was to introgress small overlapping chromosome segments which cover the genome of L. pennellii into Lycopersicon esculentum lines. The interspecific hybrid was backcrossed to L. esculentum, and a map of 981 cM, based on 146 molecular markers covering the entire genome, was produced. A similar backcross 1 population was selfed for six generations, under strong selection for cultivated tomato phenotypes, to produce 120 introgression lines. The introgression lines were assayed for the above-mentioned molecular markers, and 21 lines covering 936 cM of L. pennellii, with an average introgression of 86 cM, were selected to provide a resource for the mapping of new DNA clones. The rest of the lines have shorter introgressions consisting of specific regions with an average size of 38 cM. The proportion of the L. pennellii genome in the introgression lines was lower than expected (252 cM) because of strong selection against the wild-parent phenotype. The mean introgression rate for ends of linkage groups in the 120 lines was 3 times higher than for other regions of the genome. The introgression lines can assist in RFLP-based gene cloning by allowing the rapid selection of DNA markers that map to specific chromosome segments. The introgression lines also provide a base population for the mapping and breeding for quantitative traits such as salt and drought tolerance that characterize the wild species L. pennellii.  相似文献   

10.
Species‐level paraphyly inferred from mitochondrial gene trees is a prevalent phenomenon in taxonomy and systematics, but there are several potential causes that are not easily explained by currently used methods. This study aimed to test the underlying causes behind the observed paraphyly of Streak‐breasted Scimitar Babbler (Pomatorhinus ruficollis) via statistical analyses of four mitochondrial (mtDNA) and nine nuclear (nuDNA) genes. Mitochondrial gene trees show paraphyly of P. ruficollis with respect to the Taiwan Scimitar Babbler (Pomatorhinus musicus), but nuclear genealogies support a sister‐group relationship. Predictive coalescent simulations imply several hypothetical explanations, the most likely being mitochondrial capture of P. ruficollis by P. musicus for the observed cyto‐nuclear incongruence. Further approximate Bayesian computation suggests a unidirectional introgression model with substantial level of gene flow from P. ruficollis to P. musicus during their initial divergence during the Late Pleistocene. This specific observation frames several potential causes for incongruent outcomes of mitochondrial and nuclear introgression in general, and on the whole, our results underscore the strength of multiple independent loci for species delimitation and importance of testing hypotheses that explain disparate causes of mitochondrial gene‐tree paraphyly.  相似文献   

11.
Summary Irradiated mesophyll protoplasts from nine different accessions of B. juncea, B. nigra and B. carinata, all resistant to Phoma lingam, were used as gene donors in fusion experiments with hypocotyl protoplasts isolated from B. napus as the recipient. A toxin, sirodesmin PL, was used to select those fusion products in which the resistant gene(s) was present. In the fusion experiments different gene donors, various irradiation dosages and toxin treatments were combined. Symmetric and asymmetric hybrid plants were obtained from the cell cultures with and without toxin selection. Isozymes were used to verify hybrid characters in the symmetric hybrids, whereas two DNA probes were used to identify donor-DNA in the asymmetric hybrids. Resistance to P. lingam was expressed in all symmetric hybrids, and in 19 of 24 toxin-selected asymmetric hybrids, while all the unselected asymmetric hybrids were susceptible.  相似文献   

12.
Trunk diseases are potential threats to the poplar industry worldwide, including Iran. A survey on trunk diseases of Populus nigra in north‐western Iran revealed a new canker disease associated with dieback and decline of this host in West Azarbaijan Province of Iran. Wood samples were collected from poplar trees showing canker, dieback and decline symptoms and taken to the laboratory. A total of 173 fungal isolates were recovered from symptomatic tissues, of those 147 isolates had similar cultural and morphological features on potato dextrose agar. Based on a combination of morphological characteristics and phylogenetic inferences including DNA sequence data from the internal transcribed spacer regions (ITS1, 5.8S rDNA, and ITS2), all 147 isolates were identified as Cryptosphaeria pullmanensis. The remaining 26 isolates were identified as Cytospora chrysosperma. Pathogenicity of Cr. pullmanensis on two‐year‐old Pnigra and Populus alba saplings under glasshouse conditions confirmed that Cr. pullmanensis is pathogenic on P. nigra and P. alba. Cryptosphaeria pullmanensis is here reported from Iran causing Cryptosphaeria canker on poplar trees for the first time. However, its host range, the extent of geographical distribution and management strategies remain to be examined.  相似文献   

13.
Mitochondrial genome (mito‐genome) introgression among metazoans is commonplace, and several biological processes may promote such introgression. We examined two proposed processes for the mito‐genome introgression between Rana chensinensis and R. kukunoris: natural hybridization and sex‐biased dispersal. We sampled 477 individuals from 28 sites in the potential hybrid zone in the western Tsinling Mountains. Mitochondrial gene (cytb) trees were used to examine the introgression events. Microsatellite DNA loci, cytb and morphological data were used to identify hybrids and to examine the extent of natural hybridization. We detected rampant bidirectional introgressions, both ancient and recent, between the two species. Furthermore, we found a wide hybrid zone, and frequent and asymmetric hybridization. The hybrid zone cline analysis revealed a clear mitochondrial–nuclear discordance; while most nuclear markers displayed similar and steep clines, cytb had a displaced cline centre and a more gradual and wider cline. We also detected strong and asymmetric historical maternal gene flow across the hybrid zone. This widespread hybridization and detected low mito‐nuclear conflicts may, at least partially, explain the high frequency of introgression. Lastly, microsatellite data and population genetic methods were used to assess sex‐biased dispersal. A weak pattern of female‐biased dispersal was detected in both species, suggesting it may not play an important role in the observed introgression. Our data are consistent with the hybridization hypothesis, but support for the sex‐biased dispersal hypothesis is weak. We further suggest that selective advantages of the R. kukunoris‐type mito‐genome in thermal adaptation may also contribute to the introgression between the two species.  相似文献   

14.
Crop-to-wild introgression may play an important role in evolution of wild species. Asian cultivated rice (Oryza sativa L.) is of a particular concern because of its cross-compatibility with the wild ancestor, O. rufipogon Griff. The distribution of cultivated rice and O. rufipogon populations is extensively sympatric, particularly in Asia where many wild populations are surrounded by rice fields. Consequently, gene flow from cultivated rice may have a potential to alter genetic composition of wild rice populations in close proximity. In this study, we estimated introgression of cultivated rice with O. rufipogon based on analyses of 139 rice varieties (86 indica and 53 japonica ecotypes) and 336 wild individuals from 11 O. rufipogon populations in China. DNA fingerprinting based on 17 selected rice simple sequence repeat (SSR) primer pairs was adopted to measure allelic frequencies in rice varieties and O. rufipogon samples, and to estimate genetic associations between wild and cultivated rice through cluster analysis. We detected consanguinity of cultivated rice in O. rufipogon populations according to the admixture model of the STRUCTURE program. The analyses showedz that four wild rice populations, DX-P1, DX-P2, GZ-P2, and HL-P, contained some rare alleles that were commonly found in the rice varieties examined. In addition, the four wild rice populations that scattered among the rice varieties in the cluster analysis showed a closer affinity to the cultivars than the other wild populations. This finding supports the contention of substantial gene flow from crop to wild species when these species occur close to each other. The introgressive populations had slightly higher genetic diversity than those that were isolated from rice. Crop-to-wild introgression may have accumulative impacts on genetic variations in wild populations, leading to significant differentiation in wild species. Therefore, effective measure should be taken to avoid considerable introgression from cultivated rice, which may influence the effective in-situ conservation of wild rice species.  相似文献   

15.
A recent increase in the abundance of cattails (Typha spp.) in North American wetlands has been anecdotally linked with hybridization between Typha latifolia and Typha angustifolia. In this study, we used molecular genetic markers (microsatellites) to investigate whether the hybrid lineage (Typha × glauca) is restricted to The Great Lakes region, or exists across a much broader spatial scale. We also investigated the possibility of backcrossing and genetic introgression in natural populations. Parental species could be distinguished from one another based on the distribution of alleles at six microsatellite loci. Species identification based on genetic data corresponded well with species identifications based on leaf width, a key morphological trait that can distinguish the two parental species. We found that hybrids occur in Ontario, Quebec, New Brunswick, and Nova Scotia, but we did not detect hybrids in Maine. F1s are more abundant than backcrossed or intercrossed hybrids, although we also found evidence of backcrossing, particularly in Ontario. This indicates that hybrids are fertile, and are therefore potential conduits of gene flow between the parental species. Further work is needed to determine whether T. × glauca is particularly successful in the Great Lakes region relative to other areas in which the two parental species co-exist, and to assess whether introgression may lead to increased invasiveness in the species complex.  相似文献   

16.
This study uses traditional and contemporary phylogenetic and population genetic analyses to assess the causes of discordance (i.e., lineage sorting and introgression) among mitochondrial and nuclear gene trees for a clade of eastern North American scarab beetles (fraterna species group, genus Phyllophaga). I estimated gene trees using individual and combined analysis of one mitochondrial and two nuclear loci in MrBayes , and inferred a species tree using a hierarchical coalescent approach based on all loci in the program Best . Because hybridization violates the assumptions of Best , I tested for introgression by comparing species monophyly between the mitochondrial and nuclear gene trees based on the prediction that cytoplasmic genomes introgress more readily than nuclear genomes. Haplotype exclusivity was identified using Bayesian tests of monophyly and the genealogical sorting index. I used the results of the phylogenetic analyses and monophyly tests to develop an explicit hypothesis of introgression that could be tested in the program IMa. Results from these analyses provided evidence for introgression across clades within the fraterna group. The tiered analytical approach used in this study demonstrated how the use of multiple methods can identify when assumptions are violated and methods are prone to yield misleading results.  相似文献   

17.
We investigated the potential links between stomatal control of transpiration and the risk of embolism in root and shoot xylem of seedlings of three Mediterranean conifers (Cupressus sempervirens, Pinus halepensis and P. nigra) grown in a greenhouse under semi-controlled conditions. We measured the intrinsic vulnerability to embolism in roots and current year shoots by the air injection method. Root and shoot segments were subjected to increasing pressures, and the induced loss of hydraulic conductivity recorded. The three species displayed very different vulnerabilities in shoots, with P. nigra being much more vulnerable than P. halepensis and C. sempervirens. Roots were distinctly more vulnerable than shoots in C. sempervirens and P. halepensis (50% loss of conductivity induced at 3.0 MPa and 1.7 MPa higher xylem water potential in roots vs shoots). In P. nigra, no significant difference of vulnerability between shoots and roots was found. Seedlings were subjected to soil drought, and stomatal conductance, twig hydraulic conductivity and needle water potential were measured. The water potential resulting in almost complete stomatal closure (90%) was very close to the threshold water potential inducing loss of conductivity (10%) in twigs in P nigra, resulting in a very narrow safety margin between stomatal closure and embolism induction. The safety margin was larger in P. halepensis and greatest in C. sempervirens. Unexpectedly, this water potential threshold produced a 30–50% loss of conductivity in 3–5 mm diameter roots, depending on the species. The implications of this finding are discussed.  相似文献   

18.
19.
Summary The inheritance of chloroplast (cp) DNA was examined in F1 hybrid progenies of two Populus deltoides intraspecific controlled crosses and three P. deltoides × P. nigra and two P. deltoides × P. maximowiczii interspecific controlled crosses by restriction fragment analysis. Southern blots of restriction digests of parental and progeny DNAs were hybridized to cloned cpDNA fragments of Petunia hybrida. Sixteen enzymes and five heterologous cpDNA probes were used to screen restriction fragment polymorphisms among the parents. The mode of cpDNA inheritance was demonstrated in progenies of P. deltoides × P. nigra crosses with 26 restriction fragment polymorphisms of cpDNA differentiating P. deltoides from P. nigra, as revealed by 12 enzyme-probe combinations, and in progenies of P. deltoides × P. maximowiczii crosses with 12 restriction fragment polymorphisms separating P. deltoides from P. maximowiczii, as revealed by 7 restriction enzyme-probe combinations. In all cases, F1 offspring of P. deltoides × P. nigra and P. deltoides × P. maximowiczii crosses had cpDNA restriction fragments of only their maternal P. deltoides parent. The results clearly demonstrated uniparental-maternal inheritance of the chloroplast genome in interspecific hybrids of P. deltoides with P. nigra and P. maximowiczii. Intraspecific P. deltoides hybrids also had the same cpDNA restriction fragments as their maternal parent. Maternal inheritance of the chloroplast genome in Populus is in agreement with what has been observed for most other angiosperms.  相似文献   

20.
The European black poplar (Populus nigra L.) is a major species of riparian softwood forests. Due to human influences, it is one of the most threatened tree species in Europe. For restoration purposes, remaining stands may act as source populations. We analysed a natural population of P. nigra for genetic diversity and spatial genetic structure using seven microsatellite markers. For the first time, paternity analysis of seedlings as well as juveniles from a restricted area of natural regeneration was used to quantify pollen- and seed-mediated gene flow, respectively. In both cases, cultivated P. x canadensis trees in vicinity could act as potential parents. Spatial genetic patterns of the adult tree population suggest small-scale isolation by distance due to short-distance gene flow, the major part of which (i.e. 70%) takes place within distances of less than 1 km. This helps to explain the reduced diversity in the juveniles. It has implications for the spatial management of natural regeneration areas within in situ conservation measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号