首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The arthropod head is a complex metameric structure. In insects, orthodenticle (otd) functions as a ‘head gap gene’ and plays a significant role in patterning and development of the anterior head ectoderm, the protocerebrum, and the ventral midline. In this study, we characterize the structure and developmental deployment of two otd paralogs in the amphipod crustacean, Parhyale hawaiensis. Photd1 is initially expressed at gastrulation through germband stages in a bilaterally symmetric, restricted region of the anterior head ectoderm and also in a single column of cells along the ventral midline. Late in embryogenesis, Photd1 is expressed within the developing anterior brain and the expression along the embryonic midline has become restricted to a stereotypic group of segmentally reiterated cells. The second ortholog Photd2, however, has a unique temporal–spatial expression pattern and is not detected until after the head lobes have been organized in the developing ectoderm of the germband during late germband stages. Anteriorly, Photd2 is coincident with the Photd1 head expression domain; however, Photd2 is not detected along the ventral midline during formation of the germband and only appears in the ventral midline late in embryonic development in a restricted group of cells distinct from those expressing Photd1. The early expression of Photd1 in the anterior head ectoderm is consistent with a role as a head gap gene. The more posterior expression of Photd1 is suggestive of a role in patterning the embryonic ventral midline. Photd2 expression appears too late to play a role in early head patterning but may contribute to latter patterning in restricted regions of both the head and the ventral midline. The comparative analysis of otd reveals the divergence of gene expression and gene function associated with duplication of this important developmental gene.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

2.
We analyse the role of the empty spiracles (ems) gene in embryonic brain and ventral nerve cord development. ems is differentially expressed in the neurectoderm of the anterior head versus the trunk region of early embryos. A distal enhancer region drives expression in the deutocerebral brain anlage and a proximal enhancer region drives expression in the VNC and tritocerebral brain anlage. Mutant analysis indicates that in the anterior brain ems is necessary for regionalized neurogenesis in the deutocerebral and tritocerebral anlagen. In the posterior brain and VNC ems is necessary for correct axonal pathfinding of specific interneurons. Rescue experiments indicate that the murine Emx2 gene can partially replace the fly ems gene in CNS development.  相似文献   

3.
Summary Recent evidence indicates an important role for cell-surface mediated signal transduction in embryonic induction. We, therefore, started a systematic search to identify signal transduction pathways which are activated during embryonic induction and specifically during neural induction. We showed previously that the protein kinase C and cAMP pathways mediate neural induction inXenopus laevis. Here, we investigated whether cGMP is also involved in the early development of the nervous system. We measured the cGMP content of whole embryos at embryonic stages which mark important events in the early development of the nervous system, as well as in the developing neural tissue itself, after this was induced from ectoderm by dorsal mesoderm. No changes in cGMP content were found, either in whole embryos at different developmental stages, or in developing neural tissue from these stages. We also found no evidence for the presence of nitroprusside stimulatable guanylate cyclase in these developmental stages. A cGMP analogue, 8-Br-cGMP, was not able to induce neural tissue, either alone or in combination with known neural inducers, the phorbol ester TPA and 8-Br-cAMP. 8-Br-cGMP also had no negative influence on the neural inducing ability of dorsal mesoderm or TPA, alone or in combination with 8-Br-cAMP. We conclude that cGMP has no role in the early development of the central nervous system inXenopus laevis. This conclusion underlines the specificity of the signal transduction pathways (PKC and cAMP pathways) that do mediate neural induction.  相似文献   

4.
5.
Summary The developmental patterns of embryos produced by female germ line cells homozygous for null-enzyme mutations of dunce and for dunce in combination with each of three different rutabaga mutations are compared with the normal pattern. At least three discrete developmental defects at progressive stages following fertilization can be identified and correlated with the loss of adenylate cyclase activity caused by rutabaga mutations, suggesting that the defects are caused by elevated cyclic AMP levels in female germ line cells. The earliest defect occurs soon after fertilization and affects DNA replication and mitosis, prevents nuclear migration, and leads to large polyploid nuclei. A later defect prevents cleavage nuclei from migrating into, or dividing in, the posterior region of the egg. The last affects the developmental behavior or fate of blastoderm cells. Some of these defects mimic those produced by previously described maternal-effect mutations.  相似文献   

6.
In the early Caenorhabditis elegans embryo, a rapid succession of cell divisions, many of them asymmetric, form blastomeres that differ in size, cell cycle duration and developmental potential. These early cell cycles are highly regulated and controlled by maternally contributed products. We describe here a novel gene, mel-47, that is required maternally for the proper execution of the early cell cycles. mel-47(yt2) mutants arrest as completely disorganized embryos with 50–80 cells of variable size. The earliest defects we found are changes in the absolute and relative duration of the very early embryonic cell cycles. In particular, the posterior cell of the two-cell embryo divides late compared with its anterior sister. Frequently the daughter cells remain connected through chromatin bridges after the early cleavage divisions indicating that the chromosomes do not segregate properly. The cell cycle delay can be suppressed by knocking down a DNA replication check point. Therefore we propose that mel-47 is required for proper DNA replication in the early embryo. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

7.
Videofilm images of the heartbeat in the living embryos of the waterstrider, Gerris paludum insularis, were analyzed to demonstrate successive changes in the width of the contractile heart at the different developmental stages. This information is graphically represented and termed structural cardiogram. Onset of the embryonic heartbeat characterized by anteriorly spreading peristaltic movement of the heart wall occurs at about 55% HL (percent heart length) as early as at about 81 h after katatrepsis (K+81 h embryo). This peristaltic wave occurs almost always following swinging movement of abdominal tip observed exclusively at this stage. Similar peristaltic wave of the heart wall may also be observed at later stages, exclusively in the anterior two-fifth of the heart. Conduction velocity of the peristaltic wave estimated from structural cardiogram of K+81 h embryo was approximately 0.57 mm/s; it was approximately 1.33 mm/s in the K+102 h embryos. In the posterior three-fifth of the heart, however, rhythmic movement was not peristaltic. Development of heartbeat generator in the specific region of the heart was discussed in relation to the onset of embryonic heartbeat.  相似文献   

8.
Exploring differences in gene requirements between species can allow us to delineate basic developmental mechanisms, provide insight into patterns of evolution, and explain heterochronic differences in developmental processes. One example of differences in gene requirements between zebrafish and mammals is the requirement of the kit receptor tyrosine kinase in melanocyte development. kit is required for migration, survival and differentiation of all neural crest-derived melanocytes in mammals. In contrast, zebrafish kit is not required for differentiation of embryonic melanocytes during normal development. When melanoblast development in zebrafish embryos is delayed by injecting morpholinos targeted to the mitfa gene, we show that these delayed melanoblasts fail to differentiate in kit mutants. Thus, we show that there is a kit requirement for melanocyte differentiation in zebrafish when melanoblast development is delayed. Furthermore, we show that kit is not involved in maintaining melanocyte precursors through the developmental delay, but instead is required for differentiation of melanocytes after the block on their development is removed. Finally, we suggest there is a heterochronic shift in the onset of melanocyte differentiation between fish and mouse, and developmental delay of melanoblast development in zebrafish removes this heterochronic difference.Edited by D. Tautz  相似文献   

9.
Members of the orthodenticle (otd/Otx) and empty spiracles (ems/Emx) gene families are head gap genes that encode homeodomain-containing DNA-binding proteins. Although numerous studies show their central role in developmental processes in brain specification, a surprisingly high number of other developmental processes have been shown to involve their expression. In this paper, we report the identification and expression of ems and otd in two chelicerate species: a scorpion, Euscorpius flavicaudis (Chactidae, Scorpiona, Arachnida, Euchelicerata) and a spider, Tegenaria saeva (Aranea, Arachnida, Euchelicerata). We show that both ems and otd are expressed not only in an anterior head domain but also along the entire anterior–posterior axis during embryonic development. The expression patterns for both genes are typically segmental and concern neurectodermal territories. During patterning of the opisthosoma, ems and otd are expressed in the lateral ectoderm just anterior to the limb bud primordia giving rise to respiratory organs and spinnerets (spider). This common pattern found in two divergent species thus appears to be a conserved character of chelicerates. These results are discussed in terms of evolutionary origin of respiratory organs and/or functional pathway recruitment.  相似文献   

10.
11.
Summary We have studied the embryonic and adult phenotypes of genetic combinations between Polycomb (Pc), Regulator of bithorax (Rg-bx) and the genes of the Bithorax complex (BX-C) and the Antennapedia complex (ANT-C). The products of Pc and Rg-bx genes act antagonistically, their mutant combinations leading to the ectopic expression of genes of the BX-C and ANT-C. The genetic analysis of the Pc locus suggests it is a complex gene. Pc+ products behave as members of a regulatory set that negatively control the expression of BX-C and ANT-C genes. Genetic combinations between different doses of Pc, Rg-bx and the genes of the BX-C and ANT-C have phenotypes which may be interpreted as resulting from ectopic derepression of posterior selector genes repressing selector genes of anterior segments. The transformation phenotypes of certain genetic combinations differ in embryos and adults. A model of regulation of the BX-C and the ANT-C genes during the imaginal cell proliferation is presented, in which the specification state is maintained by self-activation of a given selector gene and down modulation of other selector genes in the same cell.  相似文献   

12.
The evolution of larval head morphology in holometabolous insects is characterized by reduction of antennal appendages and the visual system components. Little insight has been gained into molecular developmental changes underlying this morphological diversification. Here we compare the expression of the segment polarity gene wingless (wg) in the pregnathal head of fruit fly, flour beetle and grasshopper embryos. We provide evidence that wg activity contributes to segment border formation, and, subsequently, the separation of the visual system and protocerebrum anlagen in the anterior procephalon. In directly developing insects like grasshopper, seven expression domains are formed during this process. The activation of four of these, which correspond to polar expression pairs in the optic lobe anlagen and the protocerebral ectoderm, has shifted to postembryonic stages in flour beetle and Drosophila. The remaining three domains map to the protocerebral neuroectoderm, and form by disintegration of a large precursor domain in flour beetle and grasshopper. In Drosophila, the precursor domain remains intact, constituting the previously described “head blob”. These data document major changes in the expression of an early patterning gene correlated with the dramatic evolution of embryonic visual system development in the Holometabola.  相似文献   

13.
14.
Summary Mutations in seven different maternal-effect loci on the second chromosome of Drosophila melanogaster all cause alterations in the anterior-posterior pattern of the embryo. Mutations in torso (tor) and trunk (trk) delete the anterior- and posterior-most structures of the embryo. At the same time they shift cellular fates which are normally found in the subterminal regions of the embryo towards the poles. Mutations in vasa (vas), valois (vls), staufen (stau) and tudor (tud) cause two embryonic defects. For one they result in absence of polar plasm, polar granules and pole cells in all eggs produced by mutant females. Secondly, embryos developing inside such eggs show deletions of abdominal segments. In addition, embryos derived from staufen mothers lack anterior head structures, embryos derived from valois mothers frequently fail to cellularize properly. Mutations in exuperantia (exu) cause deletions of anterior head structures, similar to torso, trunk and staufen. However in exu, these head structures are replaced by an inverted posterior end which comprises posterior midgut, proctodeal region, and often malpighian tubules.The effects of all mutations can be traced back to the beginning stages of gastrulation, indicating that the alterations in cellular fates have probably taken place by that time. Analysis of embryos derived from double mutant mothers suggests that these three phenotypic groups of mutants interfere with three different, independent pathways. All three pathways seem to act additively on the system which specifies anterior-posterior cellular fates within the egg.  相似文献   

15.
The role of the posterior hypothalamus in the development of the epithelial hypophysis was studied in Bufo embryos. In animals from which the central part of the neural plate (NP) had been surgically removed at the open neurula stage, the infundibulum did not develop, and the epithelial hypophysis was formed away from the normal site without morphological connection with the brain. Immunoreactive MSH cells and ACTH cells, i.e, the pituitary POMC cells, were not detected in any of the surgically treated animals while other types of secretory cells (PRL, GH, TSH and GTH cells) were invariably present. In view of the fact that POMC cells originate in the anterior neural ridge, and not in the neural plate, the embryonic brain seems to exert an inductive influence upon the primordial pituitary POMC cells. Since these cells differentiate in a tail graft, isolated from the brain at a later stage (tail-bud stage), the inductive stimuli must be conveyed from/via the posterior hypothalamus to the pituitary anlage between the open neurula and the tail-bud stages.Abbreviations ACTH Adrenocorticotropic hormone - ANR anterior neural ridge - GH growth hormone - GTH gonadotropic hormone - MSH metanocyte stimulating hormone - NP central part of anterior neural plate - POMC proopiomelanocortin - PRL prolactin - TSH thyroid-stimulating hormone  相似文献   

16.
Summary Cytoplasm removal/transplant techniques applied to Drosophila cleavage-stage embryos induced changes in anteroposterior polarity. Removal of anterior cytoplasm or anterior transplantation of posterior cytoplasm caused the anterior formation of posterior (telson) structures, and the replacement of anterior cytoplasm with posterior cytoplasm induced double-abdomen embryos, as reported by Frohnhöfer et al. [J Embryol Exp Morphol 97 (suppl):169–179 (1986)]. Changing the conditions of anterior cytoplasm removal we showed that greater volumes, earlier stages, and removal from the periphery were efficient. In addition we found that double-cephalon embryos are induced by replacing posterior cytoplasm with anterior cytoplasm, while removal of posterior cytoplasm or the posterior transplantation of anterior cytoplasm was without effect. However, introduction of anterior cytoplasm into the posterior of nanos embryos, which are mutants not developing abdominal segments, caused the formation of double-cephalon embryos. Similarly, double-abdomen embryos are produced by introducing posterior cytoplasm into the anterior of bicoid embryos, which are mutants not forming cephalic and thoracic structures. These results are compatible with the initial involvement of separate anterior, posterior and terminal cytoplasmic factors deduced from mutant analysis (Nüsslein-Volhard and Roth 1989).  相似文献   

17.
The Caenorhabditis elegans gene laf-1 is critical for both embryonic development and sex determination. Laf-1 is thought to promote male cell fates by negatively regulating expression of tra-2 in both hermaphrodites and males. We cloned laf-1 and established that it encodes a putative DEAD-box RNA helicase related to Saccharomyces cerevisiae Ded1p and Drosophila Vasa. Three sequenced laf-1 mutations are missense alleles affecting a small region of the protein in or near helicase motif III. We demonstrate that the phenotypes resulting from laf-1 mutations are due to loss or reduction of laf-1 function, and that both laf-1 and a related helicase vbh-1 function in germline sex determination. Laf-1 mRNA is expressed in both males and hermaphrodites and in both the germline and soma of hermaphrodites. It is expressed at all developmental stages and is most abundant in embryos. LAF-1 is predominantly, if not exclusively, cytoplasmic and colocalizes with PGL-1 in P granules of germline precursor cells. Previous results suggest that laf-1 functions to negatively regulate expression of the sex determination protein TRA-2, and we find that the abundance of TRA-2 is modestly elevated in laf-1/+ females. We discuss potential functions of LAF-1 as a helicase and its roles in sex determination.  相似文献   

18.
Dicer is an enzyme that processes microRNAs (miRNAs) to their mature forms. As miRNAs were first discovered for their role in the control of developmental timing, we investigated their potential requirement in mouse somitogenesis, an event with precise temporal periodicity. To address the collective role of miRNAs in mesoderm development including somite formation, we used T (Brachyury)-Cre mouse line to inactivate Dicer in most cells of the mesoderm lineage. This Dicer mutant exhibits a reduced anterior–posterior axis. Somite number remains normal in mutant embryos up until the death of the embryos more than two days after Dicer inactivation. Consistent with this, the molecular machineries required for establishing segmentation, including clock and wave front, are not perturbed. However, somite size is reduced and later-formed somites are caudalized, coincident with increased cell death. Outside of the paraxial mesoderm and prior to apparent reduction of the axis in the mutant, the position of the hindlimb bud, a lateral plate mesoderm-derived structure, is posteriorly shifted and the timing of hindlimb bud initiation is delayed accordingly. We observed changes in the expression of genes critical for limb positioning, which include a shifted and delayed downregulation of Hand2 and Tbx3, and shifted and delayed upregulation of Gli3 in the prospective limb bud field. The 3′ UTRs of both Hand2 and Tbx3 harbor target sites for a seed sequence-sharing family of miRNAs mir-25/32/92/363/367. As an example of the family we show that mir-363, a miRNA with elevated expression in the prospective limb bud field, is capable of inhibiting Hand2/Tbx3 expression in vitro in a binding site-dependent manner. Together, our findings provide the first demonstration that in mouse embryonic mesoderm, while Dicer is dispensable for somite segmentation, it is essential for proper limb bud positioning.  相似文献   

19.
Summary We have used interspecific grafts between Xenopus borealis and Xenopus laevis to study the signalling system that produces tail mesoderm. Early gastrula ectoderm grafted into the posterior neural plate region of neurulae responds to a mesodermal inducing signal in this region and forms mainly tail somites; this signal persists until at least the early tail bud stage. Ventral ectoderm grafted into the posterior neural plate loses its competence to respond to this signal after stage 10 1/2. We have established the specification of anterior and posterior neural plate ectoderm. In ectodermal sandwiches or when grafted into unusual positions, anterior regions gave rise to mainly nervous system and posterior regions to large amounts of muscle, together with some nervous system. Thus it was impossible to assess the competence of posterior neural plate ectoderm to form further mesoderm and hence to establish if mesodermal induction continues during neurulation in unmanipulated embryos.  相似文献   

20.
Defects in closure of embryonic tissues such as the neural tube, body wall, face and eye lead to severe birth defects. Cell adhesion is hypothesized to contribute to closure of the neural tube and body wall; however, potential molecular regulators of this process have not been identified. Here we identify an ENU-induced mutation in mice that reveals a molecular pathway of embryonic closure. Line2F homozygous mutant embryos fail to close the neural tube, body wall, face, and optic fissure, and they also display defects in lung and heart development. Using a new technology of genomic sequence capture and high-throughput sequencing of a 2.5 Mb region of the mouse genome, we discovered a mutation in the grainyhead-like 2 gene (Grhl2). Microarray analysis revealed Grhl2 affects the expression of a battery of genes involved in cell adhesion and E-cadherin protein is drastically reduced in tissues that require Grhl2 function. The tissue closure defects in Grhl2 mutants are similar to that of AP-2α null mutants and AP-2α has been shown to bind to the promoter of E-cadherin. Therefore, we tested for a possible interaction between these genes. However, we find that Grhl2 and AP-2α do not regulate each other's expression, E-cadherin expression is normal in AP-2α mutants during neural tube closure, and Grhl2;AP-2α trans-heterozygous embryos are morphologically normal. Taken together, our studies point to a complex regulation of neural tube fusion and highlight the importance of comparisons between these two models to understand more fully the molecular pathways of embryonic tissue closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号