首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low-neurovirulence Theiler's murine encephalomyelitis viruses (TMEV), such as BeAn virus, cause a persistent infection of the central nervous system (CNS) in susceptible mouse strains that results in inflammatory demyelination. The ability of TMEV to persist in the mouse CNS has traditionally been demonstrated by recovering infectious virus from the spinal cord. Results of infectivity assays led to the notion that TMEV persists at low levels. In the present study, we analyzed the copy number of TMEV genomes, plus- to minus-strand ratios, and full-length species in the spinal cords of infected mice and infected tissue culture cells by using Northern hybridization. Considering the low levels of infectious virus in the spinal cord, a surprisingly large number of viral genomes (mean of 3.0 x 10(9)) was detected in persistently infected mice. In the transition from the acute (approximately postinfection [p.i.] day 7) to the persistent (beginning on p.i. day 28) phase of infection, viral RNA copy numbers steadily increased, indicating that TMEV persistence involves active viral RNA replication. Further, BeAn viral genomes were full-length in size; i.e., no subgenomic species were detected and the ratio of BeAn virus plus- to minus-strand RNA indicated that viral RNA replication is unperturbed in the mouse spinal cord. Analysis of cultured macrophages and oligodendrocytes suggests that either of these cell types can potentially synthesize high numbers of viral RNA copies if infected in the spinal cord and therefore account for the heavy viral load. A scheme is presented for the direct isolation of both cell types directly from infected spinal cords for further viral analyses.  相似文献   

2.
Infection of athymic (nu/nu) mice with Theiler's murine encephalomyelitis virus results in an acute encephalitis which resembles poliomyelitis. Immunohistochemistry and in situ hybridization were used to delineate the presence of viral proteins and RNA in the nervous systems of nude mice infected with the Daniels strain of Theiler's virus. This system permits the analysis of a viral infection in the absence of an effective immune response. By immunohistochemistry, viral antigen was found in the processes and cell bodies of neurons and glial cells. Besides the presence of viral antigen in these cell types, by in situ hybridization, Theiler's virus RNA was also found in cells associated with vascular endothelium in the brains and spinal cords of these infected mice. Theiler's virus RNA-positive endothelial cells were observed not only near the primary lesions but also away from demonstrable lesions in normal-appearing regions in the central nervous system. Earlier work had suggested an intra-axonal dissemination for this virus (M. C. Dal Canto and H. L. Lipton, Am. J. Pathol. 106:20-29, 1982). Our findings are consistent with this model but also suggest an additional mechanism for virus spread within the central nervous system, i.e., by infecting vascular cells and crossing the blood-brain barrier. Lastly, after Theiler's murine encephalomyelitis virus infection, not only glial cells but also endothelial cells express major histocompatibility complex class II (la) antigen on their surface (M. Rodriguez, M. L. Pierce, and E. A. Howie, J. Immunol. 138:3438-3442, 1987). Our demonstration of Theiler's virus-infected endotheliumlike cells may explain interactions of virus products in stimulating antigen presentation.  相似文献   

3.
4.
5.
The role of humoral immunity in the protection of vaccinated SJL/J mice from central nervous system disease induced by the DA strain (DAV) of Theiler's murine encephalomyelitis virus was investigated in B-cell-deficient mice. Mice were depleted of B cells by treatment with a mouse monoclonal antibody specific for immunoglobulin M. DAV-vaccinated, B-cell-deficient mice failed to clear viral infection and were no longer protected from Theiler's murine encephalomyelitis virus-mediated central nervous system disease. CD4+ T cells are required in this model of protection to provide help for the development of an antiviral antibody response in the central nervous system.  相似文献   

6.
Short-lived minus-strand polymerase for Semliki Forest virus   总被引:21,自引:15,他引:6       下载免费PDF全文
Semliki Forest virus (SFV)-infected BHK-21, Vero, and HeLa cells incorporated [3H]uridine into 42S and 26S plus-strand RNA and into viral minus-strand RNA (complementary to the 42S virion RNA) early in the infectious cycle. Between 3 and 4 h postinfection, the synthesis of minus-strand RNA ceased in these cultures, although the synthesis of plus-strand RNA continued at a maximal rate. At the time of cessation of minus-strand RNA synthesis, two changes in the pattern of viral protein synthesis were detected: a decrease in the translation of nonstructural proteins and an increase in the translation of the viral structural proteins. Addition of cycloheximide and puromycin to cultures of SFV-infected BHK cells actively synthesizing both viral plus- and minus-strand RNA resulted within 15 to 30 min in the selective shutoff of minus-strand RNA synthesis. Removal of the cycloheximide-containing medium led to the resumption of minus-strand synthesis and to an increased rate of viral RNA synthesis. We conclude that the minus-strand polymerase regulates the rate of SFV plus-strand RNA synthesis by determining the number of minus-strand templates and that the synthesis of the minus-strand templates is regulated at the level of translation by a mechanism which utilizes one or more short-lived polymerase proteins.  相似文献   

7.
We used in situ hybridization and immunocytochemistry to look for a correlation between virus expression and white matter lesions during late demyelinating disease due to persistent Theiler's virus infection. We found the following. (i) Tissue lesions developed at the site of virus infection. This correlation was not explained by infection of lymphocytes and macrophages. (ii) Large differences in the extent of pathology existed between mice. The amount of inflammation paralleled the number of cells containing viral RNA or viral capsid antigens. (iii) C57BL/6 mice, which are resistant to demyelination, were able to eradicate the infection. Our results are strongly in favor of a mechanism of demyelination in which viral gene products play a central role.  相似文献   

8.
The highly structured 5' untranslated region (5' UTR) of Theiler's murine encephalomyelitis virus is involved in cap-independent translation of the viral RNA. Previously, we reported that the bicistronic mRNA chloramphenicol acetyltransferase-5' UTR-luciferase (Luc) efficiently expressed Luc both in a rabbit reticulocyte lysate and when transfected into BHK-21 cells. Insertion of 3 nucleotides at position 665 in the 5' UTR of this bicistronic mRNA resulted in greatly reduced Luc expression in BHK-21 cells but had little effect on expression of Luc in rabbit reticulocyte lysate. This mutation was also introduced into a virulent Theiler's murine encephalomyelitis virus chimera, Chi-VL. The kinetics of viral RNA and protein synthesis and virus production in BHK-21 cells were slower for the mutant chimera [Chi-VL(IN668)] than for Chi-VL; however, the final virus yields were comparable. Intracerebral inoculation of mice with the chimeras revealed that Chi-VL(IN668) was completely attenuated in neurovirulence. The reduced neurovirulence of Chi-VL(IN668) may be ascribed to its reduced growth in the central nervous system, most likely due to an impaired ability to synthesize viral proteins.  相似文献   

9.
The DA strain of Theiler's virus, a murine picornavirus, causes a persistent infection of glial cells of the white matter of the spinal cord, associated with chronic inflammation and primary demyelination. The GDVII strain causes an acute fatal grey matter encephalomyelitis. We characterized the target cells of GDVII and DA viruses 4 days following intracerebral inoculation, and we compared the levels of viral RNA within these cells. GDVII virus infected approximately 10 times more cells than DA virus. Whereas GDVII virus infected neurons exclusively, DA virus infected also astrocytes and possible macrophage-microglial cells. The levels of viral RNA in neurons infected with GDVII and DA viruses were of the same order. These results show that DA virus infects glial cells already at the beginning of the disease and that the more efficient spread of GDVII virus is probably not due to a higher level of RNA replication per cell.  相似文献   

10.
11.
The temporal sequence of coronavirus plus-strand and minus-strand RNA synthesis was determined in 17CL1 cells infected with the A59 strain of mouse hepatitis virus (MHV). MHV-induced fusion was prevented by keeping the pH of the medium below pH 6.8. This had no effect on the MHV replication cycle, but gave 5- to 10-fold-greater titers of infectious virus and delayed the detachment of cells from the monolayer which permitted viral RNA synthesis to be studied conveniently until at least 10 h postinfection. Seven species of poly(A)-containing viral RNAs were synthesized at early and late times after infection, in nonequal but constant ratios. MHV minus-strand RNA synthesis was first detected at about 3 h after infection and was found exclusively in the viral replicative intermediates and was not detected in 60S single-stranded form in infected cells. Early in the replication cycle, from 45 to 65% of the [3H]uridine pulse-labeled RF core of purified MHV replicative intermediates was in minus-strand RNA. The rate of minus-strand synthesis peaked at 5 to 6 h postinfection and then declined to about 20% of the maximum rate. The addition of cycloheximide before 3 h postinfection prevented viral RNA synthesis, whereas the addition of cycloheximide after viral RNA synthesis had begun resulted in the inhibition of viral RNA synthesis. The synthesis of both genome and subgenomic mRNAs and of viral minus strands required continued protein synthesis, and minus-strand RNA synthesis was three- to fourfold more sensitive to inhibition by cycloheximide than was plus-strand synthesis.  相似文献   

12.
13.
14.
Theiler's murine encephalomyelitis virus (TMEV) persists in the mouse central nervous system principally in macrophages, and infected macrophages in culture undergo apoptosis. We have detected abundant apoptotic cells in perivascular cuffs and inflammatory, demyelinating lesions of SJL mice chronically infected with TMEV. T cells comprised 74% of apoptotic cells, while 8% were macrophages, 0.6% were astrocytes, and approximately 17% remained unidentified. In situ hybridization revealed viral RNA in approximately 1% of apoptotic cells.  相似文献   

15.
Theiler's virus, a picornavirus, persists for life in the central nervous system of mouse and causes a demyelinating disease that is a model for multiple sclerosis. The virus infects neurons first but persists in white matter glial cells, mainly oligodendrocytes and macrophages. The mechanism, by which the virus traffics from neurons to glial cells, and the respective roles of oligodendrocytes and macrophages in persistence are poorly understood. We took advantage of our previous finding that the shiverer mouse, a mutant with a deletion in the myelin basic protein gene (Mbp), is resistant to persistent infection to examine the role of myelin in persistence. Using immune chimeras, we show that resistance is not mediated by immune responses or by an efficient recruitment of inflammatory cells into the central nervous system. With both in vivo and in vitro experiments, we show that the mutation does not impair the permissiveness of neurons, oligodendrocytes, and macrophages to the virus. We demonstrate that viral antigens are present in cytoplasmic channels of myelin during persistent infection of wild-type mice. Using the optic nerve as a model, we show that the virus traffics from the axons of retinal ganglion cells to the cytoplasmic channels of myelin, and that this traffic is impaired by the shiverer mutation. These results uncover an unsuspected axon to myelin traffic of Theiler's virus and the essential role played by the infection of myelin/oligodendrocyte in persistence.  相似文献   

16.
M Levy  C Aubert    M Brahic 《Journal of virology》1992,66(5):3188-3193
Infection of the mouse with Theiler's virus is one of the best animal models for the study of multiple sclerosis, a chronic demyelinating disease of the human central nervous system. The identification of the virus target cell(s) is fundamental to an understanding of the viral persistence as well as the inflammation and demyelination observed in the chronic phase of the disease. This paper reports that a small fraction of brain macrophages grown in vitro can be efficiently infected with Theiler's virus without significant cytolytic effect. Viral replication as well as continuous production of infectivity were observed in these cultures.  相似文献   

17.
In order to identify organ and cellular targets of persistent enterovirus infection in vivo, immunocompetent mice (SWR/J, H-2q) were inoculated intraperitoneally with coxsackievirus B3 (CVB3). By use of in situ hybridization for the detection of enteroviral RNA, we show that CVB3 is capable of inducing a multiorgan disease. During acute infection, viral RNA was visualized at high levels in the heart muscle, pancreas, spleen, and lymph nodes and at comparably low levels in the central nervous system, thymus, lung, and liver. At later stages of the disease, the presence of enteroviral RNA was found to be restricted to the myocardium, spleen, and lymph nodes. To characterize infected lymphoid cells during the course of the disease, enteroviral RNA and cell-specific surface antigens were visualized simultaneously in situ in spleen tissue sections. In acute infection, the majority of infected spleen cells, which are located primarily at the periphery of lymph follicles, were found to express the CD45R/B220+ phenotype of pre-B and B cells. Whereas viral RNA was also detected in certain CD4+ helper T cells and Mac-1+ macrophages, no enteroviral genomes were identified in CD8+ cytotoxic/suppressor T cells. Later in disease, the localization of enteroviral RNA revealed a persistent type of infection of B cells within the germinal centers of secondary follicles. In addition, detection of the replicative viral minus-strand RNA intermediate provided evidence for virus replication in lymphoid cells of the spleen during the course of the disease. These data indicate that immune cells are important targets of CVB3 infection, providing a noncardiac reservoir for viral RNA during acute and persistent myocardial enterovirus infection.  相似文献   

18.
We show that inactivating the beta(2)m gene increases the viral load of SJL/J mice persistently infected by Theiler's virus. Together with previous results, this shows that the characteristics of Tmevp1, a locus which controls the amount of viral RNA that persists in the central nervous system, are those of an H-2 class I gene.  相似文献   

19.
Persistent Theiler's virus infection in the central nervous system (CNS) of mice provides a highly relevant animal model for multiple sclerosis. The low-neurovirulence DA strain uses sialic acid as a coreceptor for cell binding before establishing infection. During adaptation of DA virus to growth in sialic acid-deficient cells, three amino acid substitutions (G1100D, T1081I, and T3182A) in the capsid arose, and the virus no longer used sialic acid as a coreceptor. The adapted virus retained acute CNS virulence, but its persistence in the CNS, white matter inflammation, and demyelination were largely abrogated. Infection of murine macrophage but not oligodendrocyte cultures with the adapted virus was also significantly reduced. Substitution of G1100D in an infectious DA virus cDNA clone demonstrated a major role for this mutation in loss of sialic acid binding and CNS persistence. These data indicate a direct role for sialic acid binding in Theiler's murine encephalomyelitis virus persistence and chronic demyelinating disease.  相似文献   

20.
Kang BS  Lyman MA  Kim BS 《Journal of virology》2002,76(13):6577-6585
Theiler's virus infection of the central nervous system (CNS) induces an immune-mediated demyelinating disease in susceptible mouse strains, such as SJL/J, and serves as a relevant infectious model for human multiple sclerosis. It has been previously suggested that susceptible SJL/J mice do not mount an efficient cytotoxic T-lymphocyte (CTL) response to the virus. In addition, genetic studies have shown that resistance to Theiler's virus-induced demyelinating disease is linked to the H-2D major histocompatibility complex class I locus, suggesting that a compromised CTL response may contribute to the susceptibility of SJL/J mice. Here we show that SJL/J mice do, in fact, generate a CD8(+) T-cell response in the CNS that is directed against one dominant (VP3(159-166)) and two subdominant (VP1(11-20) and VP3(173-181)) capsid protein epitopes. These virus-specific CD8(+) T cells produce gamma interferon (IFN-gamma) and lyse target cells in the presence of the epitope peptides, indicating that these CNS-infiltrating CD8(+) T cells are fully functional effector cells. Intracellular IFN-gamma staining analysis indicates that greater than 50% of CNS-infiltrating CD8(+) T cells are specific for these viral epitopes at 7 days postinfection. Therefore, the susceptibility of SJL/J mice is not due to the lack of an early functional Theiler's murine encephalomyelitis virus-specific CTL response. Interestingly, T-cell responses to all three epitopes are restricted by the H-2K(s) molecule, and this skewed class I restriction may be associated with susceptibility to demyelinating disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号