首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five hybridomas that secrete monoclonal antibodies which neutralize the infectivity of lactate dehydrogenase-elevating virus (LDV) were isolated from BALB/c mice primed with Formalin-inactivated LDV. Competition analyses indicated that all five neutralizing monoclonal antibodies recognize contiguous, if not identical, epitopes on the envelope glycoprotein of LDV (VP-3) which are not recognized by nonneutralizing VP-3-specific monoclonal antibodies isolated from the same fusion. Despite the presence of neutralizing activity, polyclonal anti-LDV antibodies obtained from persistently infected mice did not compete for binding to LDV with four of the five neutralizing monoclonal antibodies tested. The results indicate that the envelope glycoprotein of LDV possesses a major neutralizing epitope which is poorly recognized, if at all, by mice during a natural infection but is rendered immunogenic by Formalin inactivation of the virus. The epitope was also not immunogenic in a rabbit, since its polyclonal LDV-neutralizing antibodies did not inhibit binding of the mouse monoclonal antibodies to LDV. Passive immunization with the neutralizing monoclonal antibodies did not protect mice from LDV infection and did not alter the course of infection. Neutralizing monoclonal antibodies have been used to select a neutralization escape variant by a novel combination of in vitro and in vivo isolation.  相似文献   

2.
Immunoglobulin G1 (IgG1), IgG2a, and IgG2b switch variants were derived from an IgG3 monoclonal antibody directed against the VP3 envelope glycoprotein of lactate dehydrogenase-elevating virus (LDV). Among the four antibodies, IgG2a delayed the onset and progression of LDV-induced polioencephalomyelitis more than did the other subclasses. This suggests that the IgG2a predominance observed in many IgG antibody responses elicited by live viruses could, at least under some circumstances, correspond to the selection of the best protection for the infected host.  相似文献   

3.
Friend virus (FV) and lactate dehydrogenase-elevating virus (LDV) are endemic mouse viruses that can cause long-term chronic infections in mice. We found that numerous mouse-passaged FV isolates also contained LDV and that coinfection with LDV delayed FV-specific CD8+ T-cell responses during acute infection. While LDV did not alter the type of acute pathology induced by FV, which was severe splenomegaly caused by erythroproliferation, the immunosuppression mediated by LDV increased both the severity and the duration of FV infection. Compared to mice infected with FV alone, those coinfected with both FV and LDV had delayed CD8+ T-cell responses, as measured by FV-specific tetramers. This delayed response accounted for the prolonged and exacerbated acute phase of FV infection. Suppression of FV-specific CD8+ T-cell responses occurred not only in mice infected concomitantly with LDV but also in mice chronically infected with LDV 8 weeks prior to infection with FV. The LDV-induced suppression was not mediated by T regulatory cells, and no inhibition of the CD4+ T-cell or antibody responses was observed. Considering that most human adults are carriers of chronically infectious viruses at the time of new virus insults and that coinfections with viruses such as human immunodeficiency virus and hepatitis C virus are currently epidemic, it is of great interest to determine how infection with one virus may impact host responses to a second infection. Coinfection of mice with LDV and FV provides a well-defined, natural host model for such studies.  相似文献   

4.
HIV-1 envelope glycoproteins (Env) are the only viral antigens present on the virus surface and serve as the key targets for virus-neutralizing antibodies. However, HIV-1 deploys multiple strategies to shield the vulnerable sites on its Env from neutralizing antibodies. The V1V2 domain located at the apex of the HIV-1 Env spike is known to encompass highly variable loops, but V1V2 also contains immunogenic conserved elements recognized by cross-reactive antibodies. This study evaluates human monoclonal antibodies (mAbs) against V2 epitopes which overlap with the conserved integrin α4β7-binding LDV/I motif, designated as the V2i (integrin) epitopes. We postulate that the V2i Abs have weak or no neutralizing activities because the V2i epitopes are often occluded from antibody recognition. To gain insights into the mechanisms of the V2i occlusion, we evaluated three elements at the distal end of the V1V2 domain shown in the structure of V2i epitope complexed with mAb 830A to be important for antibody recognition of the V2i epitope. Amino-acid substitutions at position 179 that restore the LDV/I motif had minimal effects on virus sensitivity to neutralization by most V2i mAbs. However, a charge change at position 153 in the V1 region significantly increased sensitivity of subtype C virus ZM109 to most V2i mAbs. Separately, a disulfide bond introduced to stabilize the hypervariable region of V2 loop also enhanced virus neutralization by some V2i mAbs, but the effects varied depending on the virus. These data demonstrate that multiple elements within the V1V2 domain act independently and in a virus-dependent fashion to govern the antibody recognition and accessibility of V2i epitopes, suggesting the need for multi-pronged strategies to counter the escape and the shielding mechanisms obstructing the V2i Abs from neutralizing HIV-1.  相似文献   

5.
Over 90% of cyclophosphamide-treated, 6- to 7-month-old C58/M mice developed fatal paralytic disease after infection with a virulent strain of lactate dehydrogenase-elevating virus (LDV), with a mean onset of paralysis of about 16 days. Passive immunization with polyclonal antibodies or with a group of anti-LDV monoclonal antibodies (MAbs) with single-epitope specificity 1 day before or at the time of LDV infection prevented the development of paralytic disease without interfering with the replication of LDV in permissive macrophages, the primary host cells of LDV. In situ hybridization of spinal cord sections with an LDV-specific cDNA probe indicated that the MAb specifically prevented the cytocidal infection of motor neurons by LDV without blocking the infection of smaller nonneuronal cells in the spinal cord. The protective antibodies recognize at least two different epitopes on the glycoprotein of LDV, VP-3. Passive immunizations with other anti-LDV MAbs, which recognize at least three other epitopes on VP-3 of LDV, afforded no protection. In contrast to the protective effect of anti-LDV MAb injection before or at the time of LDV infection, their administration postinfection exerted relatively little protection, though it delayed the appearance of paralytic symptoms. However, repeated injections of MAbs until at least 7 days postinfection also afforded a high degree of protection. The results indicate that protective MAbs may interfere with two stages in the development of LDV-induced paralytic disease. When administered at the time of LDV infection, they prevent the initial infection of spinal cord motor neurons. After this initial event, repeated injections of MAb are required to inhibit the spread of LDV between neurons until the endogenous production of protective anti-LDV antibodies in these mice.  相似文献   

6.
Infection of cultures of peritoneal macrophages with both lactate dehydrogenase-elevating virus (LDV) and mouse hepatitis virus (MHV) resulted in the formation of pseudotype virions containing LDV RNA which productively infected cells that are resistant to infection by intact LDV virions but not to infection by MHV. These cells were mouse L-2 and 3T3-17Cl-1 cells as well as residual peritoneal macrophages from persistently LDV-infected mice. Productive LDV infection of these cells via pseudotype virions was inhibited by antibodies to the MHV spike protein or to the MHV receptor, indicating that LDV RNA entered the cells via particles containing the MHV envelope. Simultaneous exposure of L-2 cells to both LDV and MHV resulted in infection by MHV but not by LDV. The results indicate that an internal block to LDV replication is not the cause of the LDV nonpermissiveness of many cell types, including the majority of the macrophages in an adult mouse. Instead, LDV permissiveness is restricted to a subpopulation of mouse macrophages because only these cells possess a surface component that acts as an LDV receptor.  相似文献   

7.
Lactate dehydrogenase-elevating virus (LDV) was purified from culture fluid of infected primary cultures of various mouse tissues (peritoneal macrophage, bone marrow, spleen, and embryo) and from plasma of infected mice. Electron microscopy of negatively stained virus and positively stained sections of LDV revealed spherical particles of uniform size with a diameter of about 55 nm, containing an electron-dense core with a diameter of about 30 nm. During sample preparation the envelope had a tendency to slough off and disintegrate to form aggregates of various sizes and small hollow particles with a diameter of 8 to 14 nm. Two strains of LDV exhibited a density of 1.13 g/cm3 in isopycnic sucrose density gradient centrifugation whether propagated in primary cultures of the various mouse tissues or isolated from plasma of infected mice. A brief incubation of LDV in a solution containing 0.01% Nonidet P-40 or Triton X was sufficient to release the viral nucleocapsid, whereas a similar treatment had no effect on Sindbis virus. The nucleocapdis of LDV exhibited a density of 1.17 g/cm3, was devoid of phosphatidylcholine, and contained only the smallest of the viral proteins, VP-1, which had a molecular weight of about 15,000. The envelope contained two proteins. VP-2 with a molecular weight of 18,000 and a glycoprotein, VP-3, which migrated heterogenously (24,000 to 44,000 daltons) during polyacrylamide gel electrophoresis. When compared to the sedimentation rate of 29S rRNA, the RNAs of LDV and Sindbis virus sedimented at 48 and 45S, respectively, whether analyzed by zone sedimentation in sucrose density gradients containing low or high salt concentrations or denatured by treatment with formaldehyde. Our results indicate that LDV should be classified as a togavirus, but that LDV is sufficiently different from alpha and flaviviruses to be excluded from these groups.  相似文献   

8.
T Inada  H Kikuchi    S Yamazaki 《Journal of virology》1993,67(9):5698-5703
Lactate dehydrogenase-elevating virus (LDV) has a strict species specificity. Cells or cell lines other than a particular subset of mouse primary macrophages which can support LDV replication in vitro have not been identified. LDV induces neurological disorders in old C58 or AKR strains, in which the involvement of multiple copies of the endogenous N-tropic murine leukemia virus (MuLV) genome and the Fv-1 locus of the mouse has been implicated. Our previous studies have demonstrated that LDV could infect and replicate in cell lines of the mouse or other species in vitro when they were infected with MuLV. The significance of and the precise mechanism underlying this phenomenon, however, remain unclear. We demonstrated in this study the efficient infection and replication of the virus in vitro by inoculation of its RNA mixed with liposome. No significant difference either in the efficiency of RNA transfection or in the ability to support its replication was observed among the various species' cell lines examined. In addition, by RNA transfection the virus replicated with equal efficiency in MuLV-infected and -uninfected cells or in macrophages derived from mice irrespective of their age. In contrast, the pattern of the infection by virus particles was quite different; LDV replication was observed only in macrophages (particularly from newborn mice) and MuLV-infected cells. By using various LDV isolates, it was demonstrated that the capability of replication between neurovirulent, LDV type C, and the other avirulent strains was almost the same in mouse cell lines when their RNA was introduced into the cells. Higher infectivity of LDV-C to MuLV-infected cells may be due to its efficient incorporation of the particles into MuLV-infected cells.  相似文献   

9.
Thirteen strains of Sendai virus isolated from various sources in the 1950's and after 1976 were compared for their reactivities with monoclonal antibodies prepared against the prototype strain MN of Sendai virus. Results revealed that while the 5 strains isolated in the 1950's reacted with all the monoclonal antibodies as the prototype strain did, the 2 strains isolated in 1976 and 1978 did not react with an F-specific monoclonal antibody, and the other 6 strains isolated after 1978 lacked reactivity with an HN-specific monoclonal antibody.  相似文献   

10.
Intergenic antigenic relationships between measles virus and respiratory syncytial (RS) virus-specific structural components were studied by using monoclonal antibodies. Of 75 monoclonal antibodies against these components, only one, an anti-measles virus hemagglutinin monoclonal antibody, cross-reacted. Immunofluorescence analysis of measles virus- and RS virus-infected cells with this monoclonal antibody showed qualitatively different staining patterns which indicated that the antigen involved in cross-reaction was the RS virus nucleoprotein or phosphoprotein. A radioimmunoprecipitation assay showed the antigen to be the nucleoprotein.  相似文献   

11.
Disulfide bonds were found to link the nonglycosylated envelope protein VP-2/M (19 kDa), encoded by open reading frame 6, and the major envelope glycoprotein VP-3 (25 to 42 kDa), encoded by open reading frame 5, of lactate dehydrogenase-elevating virus (LDV). The two proteins comigrated in a complex of 45 to 55 kDa when the virion proteins were electrophoresed under nonreducing conditions but dissociated under reducing conditions. Furthermore, VP-2/M was quantitatively precipitated along with VP-3 in this complex by three neutralizing monoclonal antibodies to VP-3. The infectivity of LDV was rapidly and irreversibly lost during incubation with 5 to 10 mM dithiothreitol (> 99% in 6 h at room temperature), which is known to reduce disulfide bonds. LDV inactivation correlated with dissociation of VP-2/M and VP-3. The results suggest that disulfide bonds between VP-2/M and VP-3 are important for LDV infectivity. Hydrophobic moment analyses of the predicted proteins suggest that VP-2/M and VP-3 both possess three adjacent transmembrane segments and only very short ectodomains (10 and 32 amino acids, respectively) with one and two cysteines, respectively. Inactivation of LDV by dithiothreitol and dissociation of the two envelope proteins were not associated with alterations in LDV's density or sedimentation coefficient.  相似文献   

12.
The effect of monoclonal antibodies on the growth of herpes simplex virus type 1 in trigeminal ganglia was investigated. Four-week-old mice were infected on an abrased cornea with herpes simplex virus type 1. Forty-eight hours after infection, trigeminal ganglia ipsilateral with infected eyes were removed and placed in culture. Incubation of infected ganglia in the presence of a pool of nonneutralizing monoclonal antibodies specific for glycoproteins of gB and gE suppressed virus growth by greater than 90%. This was comparable to the amount of suppression observed when infected ganglia were incubated in hyperimmune serum. Individual monoclonal antibodies were less efficient, being able to inhibit virus growth by only two- to threefold. The mechanism of suppression was examined. Reduction in virus growth was observed under conditions in which all susceptible ganglion cells were infected in vitro before nonneutralizing monoclonal antibody was added. Similar results were obtained in tests with virus-infected neuroblastoma cells. Furthermore, suppression of infectious progeny was seen in the absence of complement and immunologically reactive cells. Thus, neither virus neutralization nor immunocytolysis could account for the effects of antibody on virus growth. Rather, the data suggest that antibody can bind to herpes simplex virus type 1-infected neuronal cells and suppress intracellular virus replication.  相似文献   

13.
In this study, we identified a region in the human parvovirus structural protein which involves the neutralization of the virus by a monoclonal antibody and site-specific synthetic peptides. A newly established monoclonal antibody reacted with both viral capsid proteins VP1 and VP2. The epitope was found in six strains of independently isolated human parvovirus B19. The monoclonal antibody could protect colony-forming unit erythroid in human bone marrow cell culture from injury by the virus. The monoclonal antibody reacted with only 1 of 12 peptides that were synthesized according to a predicted amino acid sequence based on nucleotide sequences of the coding region for the structural protein of B19 virus. The sequence recognized by the antibody was a site corresponding to amino acids 328 to 344 from the amino-terminal portion of VP2. This evidence suggests that the epitope of the viral capsid protein is located on the surface of the virus and may be recognized by virus-neutralizing antibodies.  相似文献   

14.
Polyclonal antibody to measles virus can have profound effects on external (outer plasma membrane) as well as internal (cytoplasmic) viral polypeptides expressed in infected cells. The process, termed "antibody-induced antigenic modulation," was further investigated by using monoclonal antibody to several viral polypeptides. Four monoclonal antibodies against the viral hemagglutinin had the ability to decrease the expression of the phosphoprotein, fusion, and membrane protein. A monoclonal antibody to the nucleocapsid protein did not cause these changes. The observed decreases were not due to preferential degradation of viral polypeptides as determined by pulse-chase experiments. Our results indicate that a specific signal to an epitope on the plasma membrane (monoclonal antibody measles virus hemagglutinin) can alter the expression of measles virus phosphoprotein and membrane protein, both polypeptides present in the cytoplasm of infected cells.  相似文献   

15.
The hepatitis B-like viruses (human hepatitis B virus, woodchuck hepatitis virus, ground squirrel hepatitis virus, and duck hepatitis B virus) are hepatotropic DNA viruses which have been referred to collectively as "hepadnaviruses." Using a murine monoclonal antibody (101-2) to the surface antigen of woodchuck hepatitis virus, we have shown that the surface antigens of mammalian hepadnaviruses (HBsAg, WHsAg, and GSHsAg) are antigenically related via a common determinant (HV/101). Furthermore, analysis with other monoclonal antibodies to WHsAg revealed that WHsAg and GHsAg are antigenically distinct, although the antigens had more determinants in common with each other than with HBsAg. The hepadnavirus group-specific antibody (101-2) reacted with HBsAg subtypic variants in a group-specific rather than subtype-specific manner. In conjunction with observations with an HBsAg-specific, group-reactive monoclonal antibody (BX259), the present data suggest that there are at least two group-reactive epitopes of HBsAg: one which is virus specific (HBV/259) and one which is common to two other mammalian hepadnaviruses (HV/101).  相似文献   

16.
We studied the effect of antibody on the growth of reovirus, serotypes 1 and 3, in P388D1, a continuous mouse macrophage-like cell line. Enhanced growth of virus was observed when cells were infected in the presence of nonneutralizing monoclonal antibodies or subneutralizing concentrations of either immune ascitic fluids or neutralizing monoclonal antibodies. Both enhancement of viral growth and neutralization were accompanied by an antibody-mediated increase in binding of radiolabeled virus to P388D1 cells. Although neutralization was seen only with monoclonal antibodies directed toward the sigma-1 surface protein of the virus, enhancement was observed with two monoclonal antibodies directed toward other surface proteins. Trypsin treatment of P388D1 cells abrogated enhanced growth of virus mediated by a mouse IgG2a antibody; preincubation with P388D1 with human IgG1 but not IgG2 myeloma proteins also abrogated enhancement by immune ascitic fluid or monoclonal antibody. These observations are compatible with known properties of P388D1 Fc receptors and support the role of the Fc receptor in antibody-mediated infection.  相似文献   

17.
The widespread presence of endogenous retroviruses in the genomes of animals and humans has suggested that these viruses may be involved in both normal and abnormal developmental processes. Previous studies have indicated the involvement of endogenous ecotropic murine leukemia virus (MuLV) in the development of age-dependent poliomyelitis caused by infection of old C58 or AKR mice by lactate dehydrogenase-elevating virus (LDV). The only genetic components which segregate with susceptibility to LDV-induced paralytic disease are multiple proviral copies of ecotropic MuLV and the permissive allele, at the Fv-1 locus, for N-tropic, ecotropic virus replication (Fv-1n/n). Using in situ hybridization and Northern (RNA) blot hybridization, we have correlated the expression of the endogenous MuLV, both temporally and spatially, with LDV infection of anterior horn motor neurons and the development of paralysis. Our data indicate that treatment of 6- to 7-month-old C58/M mice with cyclophosphamide, which renders these mice susceptible to LDV-induced paralytic disease, results in transient increases in ecotropic MuLV RNA levels in motor neurons throughout the spinal cord. Peripheral inoculation of C58/M mice with LDV, at the time of elevated MuLV RNA levels, results in a rapid spread of LDV to some spinal cord motor neurons. LDV infections then spread slowly but progressively throughout the spinal cord, involving an increasing number of motor neurons. LDV replication is cytocidal and results in neuron destruction and paralysis of the infected animals 2 to 3 weeks postinfection. The slow replication of LDV in the spinal cord contrasts sharply with the rapid replication of LDV in macrophages, the normal host cells for LDV, during the acute phase of infection. The data indicate that the interaction between the endogenous MuLV with the generally nonpathogenic murine togavirus LDV occurs at the level of the motor neuron. We discuss potential mechanisms for the novel dual-virus etiology of age-dependent poliomyelitis of mice.  相似文献   

18.
The influenza A virus M2 protein is an integral membrane protein of 97 amino acids that is expressed at the surface of infected cells with an extracellular N-terminal domain of 18 to 23 amino acid residues, an internal hydrophobic domain of approximately 19 residues, and a C-terminal cytoplasmic domain of 54 residues. To gain an understanding of the M2 protein function in the influenza virus replicative pathway, we produced and characterized a monoclonal antibody to M2. The antibody-binding site was located to the extracellular N terminus of M2 as shown by the loss of recognition after proteolysis at the infected-cell surface, which removes 18 N-terminal residues, and by the finding that the antibody recognizes M2 in cell surface fluorescence. The epitope was further defined to involve residues 11 and 14 by comparing the predicted amino acid sequences of M2 from several avian and human strains and the ability of the M2 protein to be recognized by the antibody. The M2-specific monoclonal antibody was used in a sensitive immunoblot assay to show that M2 protein could be detected in virion preparations. Quantitation of the amount of M2 associated with virions by two unrelated methods indicated that in the virion preparations used there are 14 to 68 molecules of M2 per virion. The monoclonal antibody, when included in a plaque assay overlay, considerably showed the growth of some influenza virus strains. This plaque size reduction is a specific effect for the M2 antibody as determined by an analysis of recombinants with defined genome composition and by the observation that competition by an N-terminal peptide prevents the antibody restriction of virus growth.  相似文献   

19.
As a quarantine of biological materials, we tested 96 transplantable tumors and cell lines for contamination with microorganisms in a mouse antibody production (MAP) test, enzymatic assay and microbiological culture. Contamination with lactic dehydrogenase elevating virus (LDV), mycoplasmas and Pasteurella pneumotropica was detected. A considerable difference in the contamination rate was observed between in vivo- and in vitro- propagated tumors. LDV in the tumors could be eliminated by both in vitro subculture and subpassage in nude rats. Mycoplasmas were eliminated by means of the mycoplasma-removal agent and P. pneumotropica by subpassage in mice. These results suggest that there is still a high risk of contamination in transplantable tumors and emphasizes the importance of adequate microbiological quality control.  相似文献   

20.
Prophylaxis with high doses of neutralizing antibody typically offers protection against challenge with viruses producing acute infections. In this study, we have investigated the ability of the neutralizing human monoclonal antibody, KZ52, to protect against Ebola virus in rhesus macaques. This antibody was previously shown to fully protect guinea pigs from infection. Four rhesus macaques were given 50 mg/kg of neutralizing human monoclonal antibody KZ52 intravenously 1 d before challenge with 1,000 plaque-forming units of Ebola virus, followed by a second dose of 50 mg/kg antibody 4 d after challenge. A control animal was exposed to virus in the absence of antibody treatment. Passive transfer of the neutralizing human monoclonal antibody not only failed to protect macaques against challenge with Ebola virus but also had a minimal effect on the explosive viral replication following infection. We show that the inability of antibody to impact infection was not due to neutralization escape. It appears that Ebola virus has a mechanism of infection propagation in vivo in macaques that is uniquely insensitive even to high concentrations of neutralizing antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号