首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A previous phylogenetic study on type strains of the genus Micromonospora and Micromonospora species bearing non-validly published names has pointed towards the species status of several of latter strains. Subsequent studies on morphological, cultural, chemotaxonomic, metabolic, and genomic properties, and on whole cell mass spectrometric analyses by matrix adsorbed laser desorption/ionization time-of-flight (MALDI-TOF) confirmed the species status, leading to the proposal of eight new Micromonospora species: Micromonospora citrea sp. nov., type strain DSM 43903T, Micromonospora echinaurantiaca sp. nov., type strain DSM 43904T, Micromonospora echinofusca sp. nov., type strain DSM 43913T, Micromonospora fulviviridis sp. nov., type strain DSM 43906T, Micromonospora inyonensis sp. nov., type strain DSM 46123T, Micromonospora peucetia sp. nov., type strain DSM 43363T, Micromonospora sagamiensis sp. nov., type strain DSM 43912T and Micromonospora viridifaciens sp. nov., type strain DSM 43909T.  相似文献   

3.
Arthrobacter oxydans DSM 419 and DSM 420 have chemical and microbiological properties that are consistent with assignment to the genus Arthrobacter. Both organisms have the lysine-alanine-threonine-alanine peptidoglycan type. DNA-DNA pairing studies indicated that A. oxydans DSM 419 should be reclassified as Arthrobacter ureafaciens and that A. oxydans DSM 420T forms the nucleus of a distinct genomic species. We propose that A. oxydans DSM 420 should be reclassified as Arthrobacter nicotinovorans sp. nov. The type strain is strain DSM 420.  相似文献   

4.
5.
6.
7.
The results of DNA-DNA hybridization and chemotaxonomic studies indicated that the glutamic acid producers Brevibacterium divaricatum DSM 20297T (T=type strain), "Brevibacterium flavum" DSM 20411, "Brevibacterium lactofermentum" DSM 1412 and DSM 20412, Corynebacterium lilium DSM 20137T, and Corynebacterium glutamicum DSM 20300T and DSM 20163 are members of the same species. It is proposed that all of these strains should be classified in the species Corynebacterium glutamicum. Another glutamic acid-producing strain, Corynebacterium callunae DSM 20147T, was not related at the species level to C. glutamicum and should retain its separate species status. A restriction fragment length polymorphism analysis in which oligonucleotides targeted against conserved regions of 16S and 23S rRNA genes were used as hybridizing probes distinguished the individual strains. This method may be a helpful tool for strain identification.  相似文献   

8.
9.
Five strains of bifidobacteria were isolated from faeces of a common marmoset (Callithrix jacchus) and a red-handed tamarin (Saguinus midas). The five isolates clustered inside the phylogenetic group of the genus Bifidobacterium but did not show high sequence similarities between the isolates and to known species in the genus by phylogenetic analysis based on 16S rRNA gene sequences. Sequence analyses of dnaJ1 and hsp60 also indicated their independent phylogenetic positions to each other in the Bifidobacterium cluster. DNA G+C contents of the species ranged from 57.3 to 66.3 mol%, which is within the values recorded for Bifidobacterium species. All isolates showed fructose-6-phosphate phosphoketolase activity. Based on the data provided, the five isolates represent five novel species, for which the names Bifidobacterium reuteri sp. nov. (type strain: AFB22-1(T) = JCM 17295(T) = DSM 23975(T)), Bifidobacterium callitrichos sp. nov. (type strain: AFB22-5(T) = JCM 17296(T) = DSM 23973(T)), Bifidobacterium saguini sp. nov. (type strain: AFB23-1(T) = JCM 17297(T) = DSM 23967(T)), Bifidobacterium stellenboschense sp. nov. (type strain: AFB23-3(T) = JCM 17298(T) = DSM 23968(T)) and Bifidobacterium biavatii sp. nov. (type strain: AFB23-4(T) = JCM 17299(T) = DSM 23969(T)) are proposed.  相似文献   

10.
Bacterial isolates from nematodes from Turkish soil samples were initially characterized by molecular methods and seven members of the genus Photorhabdus identified to the species level, using riboprint analyses and metabolic properties. Strain 07-5 (DSM 15195) was highly related to the type strain of Photorhabdus luminescens subsp. laumondii DSM 15139T, and was regarded a strain of this subspecies. Strains 1121T (DSM 15194T), 68-3 (DSM 15198) and 47-10 (DSM 15197) formed one, strain 39-8T (DSM 15199T), 39-7 (DSM 15196) and 01-12 (DSM 15193) formed a second cluster that branched intermediate the three subspecies of Photorhabdus luminescens. Based upon moderate 16S rRNA gene sequence similarities and differences in metabolic properties among themselves and with type strains of the three subspecies we consider the two clusters to represent two new subspecies of Photorhabdus luminescens for which the names Photorhabdus luminescens subsp. kayaii, type strain 1121T (DSM 15194T, NCIMB 13951T), and Photorhabdus luminescens subsp. thracensis subsp. nov., type strain 39-8T (DSM 15199T, NCIMB 13952T) are proposed.  相似文献   

11.
Six Clostridium strains which ferment glycerol to 1,3-propanediol were tested for their taxonomic and phylogenetic relatedness. All but one were known as C butyricum. By physiological tests, 16S rDNA sequences and fatty acid composition two groups were distinguished. The first comprised the strains VPI 3266, DSM 2478 and DSM 523 (C. "kainantoi") and was consistent with the type strain of C. butyricum in almost all characters. The second group comprising the strains DSM 5430, DSM 5431 and E5 was related to C. beijerinckii. The 16S rDNAs of these strains were almost identical with that of the type strain of C. beijerinckii, DSM 791. The DNA-DNA hybridization value of DSM 5431 and ES with C. beijerinckii DSM 791 was markedly but not decisively lower (67 and 72%, respectively). However, there were significant physiological differences to C. beijerinckii which suggested to describe the strains as a separate species, Clostridium diolis with strain SH1 (= DSM 5431) as the type strain. The new species is distinguished from C. beijerinckii, which requires complex nutrients, by its ability to grow in glucose mineral medium with biotin as the only growth factor and by differences in substrate utilization. "C. kainantoi" Takeda and Matsui was recognized as a later synonym of C. butyricum.  相似文献   

12.
13.
A non-motile and rod shaped bacterium, designated strain B1(T), was isolated from forest soil at Mt. Baekwoon, Republic of Korea. Cells were Gram-negative, catalase-positive, and oxidase-negative. The major fatty acids were 9-octadecenoic acid (C(18:1) omega9c; 42%) and hexadecanoic acid (C(16:0); 25.9%) and summed feature 3 (comprising iso-C(15:0) 2-OH and/or C(16:1) omega7c; 10.0%). The DNA G+C content was 44.1 mol%. A phylogenetic tree based on 16S rRNA gene sequences showed that strain B1(T) formed a lineage within the genus Acinetobacter and was closely related to A. baylyi DSM 14961(T) (98.6% sequence similarity), followed by A. baumannii DSM 30007(T) (97.4%), A. calcoaceticus DSM 30006(T) (97.0%) and 3 genomic species (96.8 approximately 7.6%). Phenotypic characteristics, gyrB gene sequence analysis and DNA-DNA relatedness data distinguished strain B1(T) from type strains of A. baylyi, A. baumannii, and A. calcoaceticus. On the basis of the evidence presented in this study, strain B1(T) represents a novel species of the genus Acinetobacter, for which the name Acinetobacter soli sp. nov. is proposed. The type strain is B1(T) (= KCTC 22184(T)= JCM 15062(T)).  相似文献   

14.
15.
A halophilic, Gram-positive, spore-forming motile Bacillus-like strain YIM 012(T), was isolated from one of the hypersaline soil samples collected in Xin-jiang province, China. Its optimum growth occurred at 10-20% of NaCl concentration (w/v), pH 7.0-8.0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain YIM 012(T) is a member of the genus of Alkalibacillus, which is well supported by its chemotaxonomic and molecular characteristics. Based on its phenotypic evidence and genotypic data, Alkalibacillus halophilus sp. nov. was proposed and strain YIM 012(T) (=DSM 17369(T)=KCTC 3990(T)) was assigned as the type strain of the novel species.  相似文献   

16.
Two new species of aerobic, gram-negative, peritrichously flagellated or nonmotile marine bacteria usually forming star-shaped aggregates were isolated from northeastern Atlantic Ocean bottom sediments. These organisms resembled eight star-shaped-aggregate-forming bacterial species from the Baltic Sea originally ascribed to the genus Agrobacterium but not included on the Approved Lists of Bacterial Names because of their questionable relationships to true agrobacteria. These two sets of star-shaped-aggregate-forming bacteria were compared by means of phenotypic data, DNA base compositions, DNA-DNA relatedness, and one-dimensional electrophoretic analysis of low-molecular-weight RNAs (5S rRNA and tRNA). According to the results of genotyping, the northeastern Atlantic Ocean isolates and three of the Baltic Sea species formed a group of closely related bacteria that could not be excluded from the genus Agrobacterium with certainty. Until more genotypic data are available, these five marine species are regarded as a distinct subdivision of the genus Agrobacterium consisting of Agrobacterium atlanticum sp. nov. (type strain, 1480T = DSM 5823T), A. meteori sp. nov. (type strain, 1513T = DSM 5824T), A. ferrugineum sp. nov. nom. rev. emend. (type strain, ATCC 25652T), A. gelatinovorum sp. nov. nom. rev. emend. (type strain, ATCC 25655T), and A. stellulatum sp. nov. nom. rev. emend. (type strain, ATCC 15215T). "A. aggregatum" proved to be a later subjective synonym of A. stellulatum, which had priority. The remaining four Baltic Sea species, "A. agile," "A. kieliense," "A. luteum," and "A. sanguineum," could not be placed in the new subdivision of Agrobacterium.  相似文献   

17.
18.
A novel actinomycete strain, designated YIM 30243T, was isolated from a soil sample in Yunnan Province, China. Based on the results of phenotypic and genotypic characteristics, strain YIM 30243T should be assigned to a new species of the genus Nocardia, for which the name Nocardia alba sp. nov. is proposed. The type strain is YIM 30243T (= CCTCC AA001030T = DSM 44684T).  相似文献   

19.
A total of 40 symbiotic bacterial strains isolated from root nodules of common bean grown in a soil located in the north of Tunisia were characterized by PCR-RFLP of the 16S rRNA genes. Six different ribotypes were revealed. Nine representative isolates were submitted to phylogenetic analyses of rrs, recA, atpD, dnaK, nifH and nodA genes. The strains 23C40 and 23C95 representing the most abundant ribotype were closely related to Sinorhizobium americanum CFNEI 156(T). S. americanum was isolated from Acacia spp. in Mexico, but this is the first time that this species is reported among natural populations of rhizobia nodulating common bean. These isolates nodulated and fixed nitrogen with this crop and harbored the symbiotic genes of the symbiovar mediterranense. The strains 23C2 and 23C55 were close to Rhizobium gallicum R602sp(T) but formed a well separated clade and may probably constitute a new species. The sequence similarities with R. gallicum type strain were 98.7% (rrs), 96.6% (recA), 95.8% (atpD) and 93.4% (dnaK). The remaining isolates were, respectively, affiliated to R. gallicum, E. meliloti, Rhizobium giardinii and Rhizobium radiobacter. However, some of them failed to re-nodulate their original host but promoted root growth.  相似文献   

20.
In the search for novel Xenorhabdus strains in a recently described nematode species, Steinernema thermophilum, three strains (strain 28(T) = DSM 17382(T), strain 42 = DSM 17383 and strain 43 = DSM 17384) were isolated from three independent isolation approaches from crushed mixture of infective juveniles. 16S rRNA gene sequence comparison of strains 28(T) and DSM 17383 indicated identity and the phylogenetic position pointed towards an individual taxon within the phylogenetic dendrogram of Xenorhabdus type strains. The nearest phylogenetic relatives of strain 28(T) were Xenorhabdus poinarii and Xenorhabdus szentirmaii (97.7% each). The three isolates were almost identical in reaction towards the API and BIOLOG substrate panels but differed in their reactions from those of the established type strains of the genus Xenorhabdus. These clear genomic and metabolic differences let us propose a new species, Xenorhabdus indica sp. nov. for the three clones. The type strain is strain 28(T), DSM 17382(T), CIP 108830(T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号