首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Different telomere damage signaling pathways in human and mouse cells   总被引:24,自引:0,他引:24  
Programmed telomere shortening in human somatic cells is thought to act as a tumor suppressor pathway, limiting the replicative potential of developing tumor cells. Critically short human telomeres induce senescence either by activating p53 or by inducing the p16/RB pathway, and suppression of both pathways is required to suppress senescence of aged human cells. Here we report that removal of TRF2 from human telomeres and the ensuing de-protection of chromosome ends induced immediate premature senescence. Although the telomeric tracts remained intact, the TRF2(DeltaBDeltaM)-induced premature senescence was indistinguishable from replicative senescence and could be mediated by either the p53 or the p16/RB pathway. Telomere de-protection also induced a growth arrest and senescent morphology in mouse cells. However, in this setting the loss of p53 function was sufficient to completely abrogate the arrest, indicating that the p16/RB response to telomere dysfunction is not active in mouse cells. These findings reveal a fundamental difference in telomere damage signaling in human and mouse cells that bears on the use of mouse models for the telomere tumor suppressor pathway.  相似文献   

2.
H2O2 has been the most commonly used inducer for stress-induced premature senescence (SIPS), which shares features of replicative senescence. However, there is still uncertainty whether SIPS and replicative senescence differ or utilize different pathways. 'Young' human diploid fibroblasts (HDFs), treated with prolonged low doses of hydrogen peroxide, led to irreversible cellular senescence. Cells exhibited senescent-morphological features, irreversible G1 cell cycle arrest and irreversible senescence-associated beta-galactosidase positivity. The appearance of these cellular senescence markers was accompanied by significant increases of p21, gadd45 expression and p53 binding activity, as well as a significant decline in DNA repair capability and accelerated telomere shortening. Our results suggest that multiple pathways might be involved in oxidative SIPS, including genes related to DNA-damage-and-repair and telomere shortening, and that SIPS shares the same mechanisms with replicative senescence in vivo. Our findings indicate that several aging theories can be merged together by a common mechanism of oxidative damage, and that the level of oxidative DNA-damage-and-repair capacity may be exploited as reliable markers of cell senescence.  相似文献   

3.
In addition to replicative senescence, normal diploid fibroblasts undergo stress-induced premature senescence (SIPS) in response to DNA damage caused by oxidative stress or ionizing radiation (IR). SIPS is not prevented by telomere elongation, indicating that, unlike replicative senescence, it is triggered by nonspecific genome-wide DNA damage rather than by telomere shortening. ATM, the product of the gene mutated in individuals with ataxia telangiectasia (AT), plays a central role in cell cycle arrest in response to DNA damage. Whether ATM also mediates signaling that leads to SIPS was investigated with the use of normal and AT fibroblasts stably transfected with an expression vector for the catalytic subunit of human telomerase (hTERT). Expression of hTERT in AT fibroblasts resulted in telomere elongation and prevented premature replicative senescence, but it did not rescue the defect in G(1) checkpoint activation or the hypersensitivity of the cells to IR. Despite these remaining defects in the DNA damage response, hTERT-expressing AT fibroblasts exhibited characteristics of senescence on exposure to IR or H(2)O(2) in such a manner that triggers SIPS in normal fibroblasts. These characteristics included the adoption of an enlarged and flattened morphology, positive staining for senescence-associated beta-galactosidase activity, termination of DNA synthesis, and accumulation of p53, p21(WAF1), and p16(INK4A). The phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which mediates signaling that leads to senescence, was also detected in both IR- or H(2)O(2)-treated AT and normal fibroblasts expressing hTERT. These results suggest that the ATM-dependent signaling pathway triggered by DNA damage is dispensable for activation of p38 MAPK and SIPS in response to IR or oxidative stress.  相似文献   

4.
Zhang W  Ji W  Yang J  Yang L  Chen W  Zhuang Z 《Life sciences》2008,83(13-14):475-480
DNA methylation is considered to play an essential role in cellular senescence. To uncover the mechanism underlying cellular senescence, we established the model of premature senescence induced by hydrogen peroxide (H(2)O(2)) in human embryonic lung fibroblasts and investigated the changes of genome methylation, DNA methyltransferases (DNMTs) and DNA-binding domain proteins (MBDs) in comparison with those observed during normal replicative senescence. We found that premature senescence triggered by H(2)O(2) exhibited distinct morphological characteristics and proliferative capacity which were similar to those of replicative senescence. The genome methylation level decreased gradually during the premature as well as replicative senescence, which was associated with the reduction in the expression of DNMT1, reflecting global hypomethylation as a distinct feature of senescent cells. The levels of DNMT3b and methyl-CpG binding protein 2 (MeCP2) increased in both mid-aged and replicative senescent cells, while DNMT3a and MBD2 were upregulated in the mid-aged cells. Only DNMT3b was elevated in the cells in the premature senescence persistence status. Additionally, the expression for DNMTs, MBD2 and MeCP2 was increased rapidly upon H(2)O(2) treatment. These results indicate that H(2)O(2)-induced premature senescence share some features of replicative senescence, such as basic biological characteristics and global hypomethylation while there are slight differences in the profile of methylation-associated enzyme expression. Oxidative damage may hence be a causative factor in epigenetic alteration partly responsible for cellular senescence.  相似文献   

5.
Cellular theory of aging states that human aging is the result of cellular aging, in which an increasing proportion of cells reach senescence. Senescence, from the Latin word senex, means “growing old,” is an irreversible growth arrest which occurs in response to damaging stimuli, such as DNA damage, telomere shortening, telomere dysfunction and oncogenic stress leading to suppression of potentially dysfunctional, transformed, or aged cells. Cellular senescence is characterized by irreversible cell cycle arrest, flattened and enlarged morphology, resistance to apoptosis, alteration in gene expression and chromatin structure, expression of senescence associated- β-galactosidase (SA-β-gal) and acquisition of senescence associated secretory phenotype (SASP). In this review paper, different types of cellular senescence including replicative senescence (RS) which occurs due to telomere shortening and stress induced premature senescence (SIPS) which occurs in response to different types of stress in cells, are discussed. Biomarkers of cellular senescence and senescent assays including BrdU incorporation assay, senescence associated- β-galactosidase (SA-β-gal) and senescence-associated heterochromatin foci assays to detect senescent cells are also addressed.  相似文献   

6.
自噬在细胞复制性衰老中起着重要的作用.然而,早老细胞中的自噬现象基本无相关的报道.本文通过外源性过氧化氢(H2O2)的诱导,构建人胚肺二倍体成纤维细胞(2BS细胞)早老模型.首先,通过SA-β-gal染色,验证细胞早老;从形态学和特异标志分子及雷帕霉素作用的靶位点(mTOR)信号通路不同角度检测自噬的变化,其中形态学检测包括丹(磺)酰戊二胺(MDC)自噬分子定量法及电镜自噬超微结构的观察;特异标志分子LC3的检测包括GFP-LC3自噬定位法和免疫印迹法检测LC3;及检测mTOR信号通路下游激酶p70S6蛋白的表达变化.结果表明,过氧化氢诱导的早老细胞中自噬体相对年轻细胞明显增多,且具有保护早老细胞的作用.  相似文献   

7.
The replicative life span of human fibroblasts is heterogeneous, with a fraction of cells senescing at every population doubling. To find out whether this heterogeneity is due to premature senescence, i.e. driven by a nontelomeric mechanism, fibroblasts with a senescent phenotype were isolated from growing cultures and clones by flow cytometry. These senescent cells had shorter telomeres than their cycling counterparts at all population doubling levels and both in mass cultures and in individual subclones, indicating heterogeneity in the rate of telomere shortening. Ectopic expression of telomerase stabilized telomere length in the majority of cells and rescued them from early senescence, suggesting a causal role of telomere shortening. Under standard cell culture conditions, there was a minor fraction of cells that showed a senescent phenotype and short telomeres despite active telomerase. This fraction increased under chronic mild oxidative stress, which is known to accelerate telomere shortening. It is possible that even high telomerase activity cannot fully compensate for telomere shortening in all cells. The data show that heterogeneity of the human fibroblast replicative life span can be caused by significant stochastic cell-to-cell variation in telomere shortening.  相似文献   

8.
We have previously reported that transforming growth factor beta (TGF-beta) triggers two independent senescence programs, 1) replicative senescence dependent upon telomere shortening and 2) premature senescence independent of telomere shortening, in the cell line of A549 human lung adenocarcinoma. In this study, we examined the possibility that cancer cell tumor phenotypes could be suppressed by forced senescence. We used A549 cells treated with TGF-beta for a long time (over 50 days), where senescence was induced in a telomere-shortening-dependent or an independent way. Fully senescent A549 cells were elongated, acquired contact inhibition capabilities when reaching confluence, and secreted the senescence-associated cytokine IL-6. Furthermore, senescent A549 cells had no tumorigenicity in nude mice. These results indicate that the forced induction of senescence in cancer cells may be a novel and potentially powerful method for advancing anti-cancer therapy.  相似文献   

9.
10.
11.
p16(INK4a), a tumor suppressor gene that inhibits cyclin-dependent kinase 4 and cyclin-dependent kinase 6, is also implicated in the mechanisms underlying replicative senescence, because its RNA and protein accumulate as cells approach their finite number of population doublings in tissue culture. To further explore the involvement of p16(INK4a) in replicative senescence, we constructed a retroviral vector containing antisense p16(INK4a), pDOR-ASp16, and introduced it into early passages of human diploid fibroblasts. The introduction of this construct significantly suppressed the expression of wild-type p16(INK4a). It also imposed a finite increase in proliferative life span and significant delay of several other cell senescent features, such as cell flattening, cell cycle arrest, and senescence-associated beta-galactosidase positivity. Moreover, telomere shortening and decline in DNA repair capacity, which normally accompany cell senescence, are also postponed by the ASp16 transfection. The life span of fibroblasts was significantly extended, but the onset of replicative senescence could not be totally prevented. Telomerase could not be activated even though telomere shortening was slowed. These observations suggest that the telomere pathway of senescence cannot be bypassed by ASp16 expression. These data not only strongly support a role for p16(INK4a) in replicative senescence but also raise the possibility of using the antisense p16(INK4a) therapeutically.  相似文献   

12.
Cellular senescence limits the replicative capacity of normal cells and acts as an intrinsic barrier that protects against the development of cancer. Telomere shortening–induced replicative senescence is dependent on the ATM‐p53‐p21 pathway but additional genes likely contribute to senescence. Here, we show that the p53‐responsive gene BTG2 plays an essential role in replicative senescence. Similar to p53 and p21 depletion, BTG2 depletion in human fibroblasts leads to an extension of cellular lifespan, and ectopic BTG2 induces senescence independently of p53. The anti‐proliferative function of BTG2 during senescence involves its stabilization in response to telomere dysfunction followed by serum‐dependent binding and relocalization of the cell cycle regulator prolyl isomerase Pin1. Pin1 inhibition leads to senescence in late‐passage cells, and ectopic Pin1 expression rescues cells from BTG2‐induced senescence. The neutralization of Pin1 by BTG2 provides a critical mechanism to maintain senescent arrest in the presence of mitogenic signals in normal primary fibroblasts.  相似文献   

13.
Following a proliferative phase of variable duration, most normal somatic cells enter a growth arrest state known as replicative senescence. In addition to telomere shortening, a variety of environmental insults and signaling imbalances can elicit phenotypes closely resembling senescence. We used p53(-/-) and p21(-/-) human fibroblast cell strains constructed by gene targeting to investigate the involvement of the Arf-Mdm2-p53-p21 pathway in natural as well as premature senescence states. We propose that in cell types that upregulate p21 during replicative exhaustion, such as normal human fibroblasts, p53, p21, and Rb act sequentially and constitute the major pathway for establishing growth arrest and that the telomere-initiated signal enters this pathway at the level of p53. Our results also revealed a number of significant differences between human and rodent fibroblasts in the regulation of senescence pathways.  相似文献   

14.
Glucose-6-phosphate dehydrogenase (G6PD) is involved in the generation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and the maintenance of cellular redox balance. We previously showed that G6PD-deficient fibroblasts undergo growth retardation and premature cellular senescence. In the present study, we demonstrate abatement of both the intracellular G6PD activity and the ratio NADPH/NADP(+) during the serial passage of G6PD-deficient cells. This was accompanied by a significant increase in the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). This suggests that the lowered resistance to oxidative stress and accumulative oxidative damage may account for the premature senescence of these cells. Consistent with this, the G6PD-deficient cells had an increased propensity for hydrogen peroxide (H(2)O(2))-induced senescence; these cells exhibited such senescent phenotypes as large, flattened morphology and increased senescence-associated beta-galactosidase (SA-beta-Gal) staining. Decreases in both the intracellular G6PD activity and the NADPH/NADP(+) ratio were concomitant with an increase in 8-OHdG level in H(2)O(2)-induced senescent cells. Exogenous expression of G6PD protected the deficient cells from stress-induced senescence. No significant telomere shortening occurred upon repetitive treatment with H(2)O(2). Simultaneous induction of p16(INK4a) and p53 was detected in G6PD-deficient but not in normal fibroblasts during H(2)O(2)-induced senescence. Our findings support the notion that G6PD status, and thus proper redox balance, is a determinant of cellular senescence.  相似文献   

15.
Reduced replicative capacity is a consistent characteristic of cells derived from patients with Werner syndrome. This premature senescence is phenotypically similar to replicative senescence observed in normal cell strains and includes altered cell morphology and gene expression patterns. Telomeres shorten with in vitro passaging of both WRN and normal cell strains; however, the rate of shortening has been reported to be faster in WRN cell strains, and the length of telomeres in senescent WRN cells appears to be longer than that observed in normal strains, leading to the suggestion that senescence in WRN cell strains may not be exclusively associated with telomere effects. We report here that the telomere restriction fragment length in senescent WRN fibroblasts cultures is within the size range observed for normal fibroblasts strains and that the expression of a telomerase transgene in WRN cell strains results in lengthened telomeres and replicative immortalization, thus indicating that telomere effects are the predominant trigger of premature senescence in WRN cells. Microarray analyses showed that mRNA expression patterns induced in senescent WRN cells appeared similar to those in normal strains and that hTERT expression could prevent the induction of most of these genes. However, substantial differences in expression were seen in comparisons of early-passage and telomerase-immortalized derivative lines, indicating that telomerase expression does not prevent the phenotypic drift, or destabilized genotype, resulting from the WRN defect.  相似文献   

16.
Loss of telomeric DNA leads to telomere uncapping, which triggers a persistent, p53-centric DNA damage response that sustains a stable senescence-associated proliferation arrest. Here, we show that in normal cells telomere uncapping triggers a focal telomeric DNA damage response accompanied by a transient cell cycle arrest. Subsequent cell division with dysfunctional telomeres resulted in sporadic telomeric sister chromatid fusions that gave rise to next-mitosis genome instability, including non-telomeric DNA lesions responsible for a stable, p53-mediated, senescence-associated proliferation arrest. Unexpectedly, the blocking of Rad51/RPA-mediated homologous recombination, but not non-homologous end joining (NHEJ), prevented senescence despite multiple dysfunctional telomeres. When cells approached natural replicative senescence, interphase senescent cells displayed genome instability, whereas near-senescent cells that underwent mitosis despite the presence of uncapped telomeres did not. This suggests that these near-senescent cells had not yet acquired irreversible telomeric fusions. We propose a new model for telomere-initiated senescence where tolerance of telomere uncapping eventually results in irreversible non-telomeric DNA lesions leading to stable senescence. Paradoxically, our work reveals that senescence-associated tumor suppression from telomere shortening requires irreversible genome instability at the single-cell level, which suggests that interventions to repair telomeres in the pre-senescent state could prevent senescence and genome instability.  相似文献   

17.
18.
Exposure of WI38 human diploid fibroblasts (HDFs) to hydrogen peroxide (H2O2) induced premature senescence. The senescent HDFs were permanently arrested and exhibited a senescent phenotype including enlarged and flattened cell morphology and increased senescence-associated beta-galactosidase (SA-beta-gal) activity. The induction of HDF senescence was associated with an activation of p53, increased expression of p21Cip1/WAF1, and hypophosphorylation of retinoblastoma protein (Rb), while no changes in the expression of p16Ink4a, p27Kip1, and p14Arf were observed. Exposure of WI38 cells to H2O2 also selectively activated phosphatidylinostol 3-kinase (PI3 kinase) and mitogen-activated protein kinase (MAPK) kinase (MEK), while no changes in p38 MAPK and Jun kinase (JNK) activities were observed. Selective inhibition of PI3 kinase activity with LY294002 abrogated H2O2-induced cell enlargement and flattened morphology and significantly attenuated the increase in SA-beta-gal activity, but did not affect H2O2-induced cell cycle arrest. In contrast, selective inhibition of MEK and p38 MAPK with PD98059 and SB203580, respectively, produced no significant effect on H2O2-induced senescent phenotype and cell cycle arrest. These findings demonstrate that expression of the senescent phenotype can be uncoupled from cell cycle arrest in prematurely senescent cells induced by H2O2 and does not contribute to the maintenance of permanent cell cycle arrest.  相似文献   

19.
Reversal of human cellular senescence: roles of the p53 and p16 pathways   总被引:34,自引:0,他引:34  
Telomere erosion and subsequent dysfunction limits the proliferation of normal human cells by a process termed replicative senescence. Replicative senescence is thought to suppress tumorigenesis by establishing an essentially irreversible growth arrest that requires activities of the p53 and pRB tumor suppressor proteins. We show that, depending on expression of the pRB regulator p16, replicative senescence is not necessarily irreversible. We used lentiviruses to express specific viral and cellular proteins in senescent human fibroblasts and mammary epithelial cells. Expression of telomerase did not reverse the senescence arrest. However, cells with low levels of p16 at senescence resumed robust growth upon p53 inactivation, and limited growth upon expression of oncogenic RAS. In contrast, cells with high levels of p16 at senescence failed to proliferate upon p53 inactivation or RAS expression, although they re-entered the cell cycle without growth after pRB inactivation. Our results indicate that the senescence response to telomere dysfunction is reversible and is maintained primarily by p53. However, p16 provides a dominant second barrier to the unlimited growth of human cells.  相似文献   

20.
How much do we know about the biology of aging from cell culture studies? Most normal somatic cells have a finite potential to divide due to a process termed cellular or replicative senescence. A growing body of evidence suggests that senescence evolved to protect higher eukaryotes, particularly mammals, from developing cancer. We now know that telomere shortening, due to the biochemistry of DNA replication, induces replicative senescence in human cells. However, in rodent cells, replicative senescence occurs despite very long telomeres. Recent findings suggest that replicative senescence is just the tip of the iceberg of a more general process termed cellular senescence. It appears that cellular senescence is a response to potentially oncogenic insults, including oxidative damage. In young organisms, growth arrest by cell senescence suppresses tumor development, but later in life, due to the accumulation of senescent cells which secret factors that can disrupt tissues during aging, cellular senescence promotes tumorigenesis. Therefore, antagonistic pleiotropy may explain in part, if not in whole, the apparently paradoxical effects of cellular senescence, though this still remains an open question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号