首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
DNA methylation patterns were studied at the chromosome level in normal and abnormal X chromosomes using an anti-5-methylcytosine antibody. In man, except for the late-replicating X of female cells, the labeled chromosome structures correspond to R- and T-bands and heterochromatin. Depending on the cell type, the species, and cell culture conditions, the late-replicating X in female cells appears to be more or less undermethylated. Under normal conditions, the only structures that remain methylated on the X chromosomes correspond to pseudoautosomal regions, which harbor active genes. Thus, active genes are usually hypomethylated but are located in methylated chromatin. Structural rearrangements of the X chromosome, such as t(X;X)(pter;pter), induce a Turner syndrome-like phenotype that is inconsistent with the resulting triple-X constitution. This suggests a position effect controlling gene inactivation. The derivative chromosomes are always late replicating, and their duplicated short arms, which harbor pseudoautosomal regions, replicate later than the normal late-replicating X chromosomes. The compaction or condensation of this segment is unusual, with a halo of chromatin surrounding a hypocondensed chromosome core. The chromosome core is hypomethylated, but the surrounding chromatin is slightly labeled. Thus, unusual DNA methylation and chromatin condensation are associated with the observed position effect. This strengthens the hypothesis that DNA methylation at the chromosome level is associated with both chromatin structure and gene expression.  相似文献   

3.
4.
5.
6.
7.
A variety of treatments with 5-azadeoxycytidine (5-aza-dC) were applied to cultured human lymphocytes during one to four cell cycles. The effect of 5-aza-dC on DNA methylation was studied by using an antibody against 5-methylcytosine on mitotic chromosomes. 5-Azadeoxycytidine is known to induce strong and permanent demethylation of DNA. Unexpectedly complex relationships were observed between DNA methylation status and chromatid/chromosome compaction. The most dramatic alteration of compaction at mitosis was observed when pre-replicative chromosomes had unifilarly demethylated DNA. The compaction of chromosomes was found to depend only partially on the methylation of their DNA at the time of mitosis. Our results suggest that alteration of DNA methylation prevents the synchronization of chromatin compaction, inducing premature (or delayed) chromosome condensation, and that a crucial step is the DNA methylation status of the pre-replicative chromosome.  相似文献   

8.
The loops which transcribe 5S ribosomal RNA in lampbrush chromosomes of the newt, Notophthalmus (Triturus) viridescens, were identified by hybridizing purified 5S DNA to nascent 5S RNA in situ. The genes which code for 5S RNA were found near the centromeres of chromosomes 1, 2, 6, and 7 by hybridizing iodinated 5S RNA to denatured lampbrush and mitotic chromosomes in situ. These genes and their intervening spacer DNA were isolated from Xenopus laevis using sequential silver-cesium sulfate equilibrium centrifugations. This purified 5S DNA was iodinated and hybridized to non-denatured lampbrush chromosomes in situ, where it bound to nascent 5S RNA on loops at the base of the centromeres of chromosomes 1, 2, 6, and 7. The number of 5S genes present in the haploid chromosome complement of N. viridescens was determined. — The 5S loops were chosen for study, since (1) the synthesis of 5S RNA has been demonstrated during the lampbrush stage, (2) both 5S RNA and 5S DNA could be isolated in pure form, and (3) the localization of the repetitive 5S genes could be verified by conventional in situ hybridization procedures. These methods may be applicable to the identification of other loops, leading to a better understanding of lampbrush chromosome function.  相似文献   

9.
10.
11.
12.
13.
14.
Jablonka  Eva  Goitein  Ruth  Marcus  Menashe  Cedar  Howard 《Chromosoma》1985,93(2):152-156
Summary We have examined the effect of 5-azacytidine (5-aza-C) induced hypomethylation of DNA on the time of replication and DNase I sensitivity of the X chromosomes of female Gerbillus gerbillus (rodent) lung fibroblast cells. Using in situ nick translation to visualise the potential state of activity of large regions of metaphase chromosomes we show that 5-aza-C causes a dramatic increase in the DNase-I sensitivity of the entire inactive X chromosome of female G. gerbillus cells and this increase in nuclease sensitivity correlates with a large shift in the time of replication of the inactive X chromosome from late S phase to early S phase. These effects of 5-aza-C on the inactive X chromosome are associated with a 15% decrease in DNA methylation. Our results indicate that DNA methylation concomitantly affects both the time of replication and the chromatin conformation of the inactive X chromosome.  相似文献   

15.
16.
17.
Onion, Allium cepa, is a model plant for experimental observation of somatic cell division, whose mitotic chromosome is extremely large, and contains the characteristic terminal heterochromatin. Epigenetic status of the onion chromosome is a matter of deep interest from a molecular cytogenetic point of view, because epigenetic marks regulate chromatin structure and gene expression. Here we examined chromosomal distribution of DNA methylation and histone modification in A. cepa in order to reveal the chromatin structure in detail. Immunodetection of 5-methylcytosine (5mC) and in situ nick-translation analysis showed that onion genomic DNA was highly methylated, and the methylated CG dinucleotides were distributed in entire chromosomes. In addition, distributions of histone methylation codes, which occur in close association with DNA methylation, were similar to those of other large genome species. From these results, a highly heterochromatic and less euchromatic state of large onion chromosomes were demonstrated at an epigenetic level.  相似文献   

18.
On the basis of recent results a unified view of different aspects of the higher levels in the organization of chromatin in chromosomes is presented. Basic to these forms of organization is the arrangement of DNA in the complex with nucleosomes and recent studies suggest that at least some species of satellite DNA may maintain a fixed DNA sequence relationship to the phasing of nucleosomes. Special proteins such as the high-mobility group (HMG) proteins or other non-histone proteins could serve specific functions in the recognition of satellite DNA sequences.In the presence of histone H1 the 110 Å nucleosome fiber formed from the basic string of nucleosomes can be further condensed into a thicker 250–300 Å fiber formed by a solenoidal coiling of the 110 Å fiber with about 6–8 nucleosomes per turn and the available evidence suggests that these structures are found in mitotic chromosomes as well as other forms of inactive chromatin. A further level of coiling of the 250–300 Å solenoid has been suggested by our recent studies of disintegrated mitotic chromosomes consisting of a thin-walled tube with an outer diameter of 4000 Å referred to as the unit fiber. This structure would account for a factor of 1400 × contraction of DNA in mitotic chromosomes which in their intact state are only 5-fold more contracted. The recently described “scaffold” proteins could be responsible for this final coiling of the unit fibers in intact chromosomes.Meiotic chromosomes are generally less contracted than mitotic chromosomes. An extreme example of this are lampbrush chromosomes that apart from the axial segments which might contain some structural proteins appear to consist of naked DNA arranged in lateral loops. In the later stages of meiosis more condensed structures arise as exemplified by the synaptonemal complex during the pachytene stage in many organisms. The characteristic features of this structure are interpreted to suggest that the structure consists of lateral components containing two parallel 110 Å nucleosome fibers each representing the axial segments of two sister chromatids. From these paired regions loops protrude laterally in a manner which closely resembles the less condensed lampbrush chromosomes. The implication of this structure in the process of crossingover is discussed.Less is known about the organization of chromatin in interphase nuclei, but structures analogous to the loop-like structures in meiotic chromosomes are suggested on the basis of the isolation of supercoiled DNA loops constrained by RNA-DNA and protein-DNA interactions. The position of these loops is suggested to be fixed by specific repeated DNA sequences that could be associated with specific tenacious non-histone or HMG proteins.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号