首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA-dependent protein kinase (DNA-PK) is involved in joining DNA double-strand breaks induced by ionizing radiation or V(D)J recombination. The kinase is activated by DNA ends and composed of a DNA binding subunit, Ku, and a catalytic subunit, DNA-PK(CS). To define the DNA structure required for kinase activation, we synthesized a series of DNA molecules and tested their interactions with purified DNA-PK(CS). The addition of unpaired single strands to blunt DNA ends increased binding and activation of the kinase. When single-stranded loops were added to the DNA ends, binding was preserved, but kinase activation was severely reduced. Obstruction of DNA ends by streptavidin reduced both binding and activation of the kinase. Significantly, short single-stranded oligonucleotides of 3-10 bases were capable of activating DNA-PK(CS). Taken together, these data indicate that kinase activation involves a specific interaction with free single-stranded DNA ends. The structure of DNA-PK(CS) contains an open channel large enough for double-stranded DNA and an adjacent enclosed cavity with the dimensions of single-stranded DNA. The data presented here support a model in which duplex DNA binds to the open channel, and a single-stranded DNA end is inserted into the enclosed cavity to activate the kinase.  相似文献   

2.
We previously purified an activity from meiotic cell extracts of Saccharomyces cerevisiae that promotes the transfer of a strand from a duplex linear DNA molecule to complementary circular single-stranded DNA, naming it Strand Transfer Protein alpha (STP alpha) (Sugino, A., Nitiss, J., and Resnick, M. A. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 3683-3687). This activity requires no nucleotide cofactor but is stimulated more than 10-fold by the addition of yeast single-stranded DNA-binding proteins (ySSBs). In this paper, we describe the aggregation and strand transfer of double-stranded and single-stranded DNA promoted by STP alpha and ySSB. There is a good correlation between the aggregation induced by various DNA-binding proteins (ySSBs, DBPs and histone proteins) and the stimulation of STP alpha-mediated DNA strand transfer. This implies that the stimulation by ySSBs and other binding proteins is probably due to the condensation of single-stranded and double-stranded DNA substrates into coaggregates. Within these coaggregates there is a higher probability of pairing between homologous double-stranded and single-stranded DNA, favoring the initiation of strand transfer. The aggregation reaction is rapid and precedes any reactions related to DNA strand transfer. We propose that condensation into coaggregates is a presynaptic step in DNA strand transfer promoted by STP alpha and that pairing between homologous double- and single-stranded DNA (synapsis) occurs in these coaggregates. Synapsis promoted by STP alpha and ySSBs also occurs between covalently closed double-stranded DNA and single-stranded linear DNA as well as linear double-stranded and linear single-stranded DNAs in the absence of any nucleotide cofactors.  相似文献   

3.
Are single-stranded circles intermediates in plasmid DNA replication?   总被引:38,自引:7,他引:31       下载免费PDF全文
Plasmid pC194 exists as circular double-stranded and single-stranded DNA in Bacillus subtilis and Staphylococcus aureus. We report here that the plasmid pHV33, composed of pBR322 and pC194, exists as double- and single-stranded DNA in Escherichia coli, provided that the replication functions of pC194 are intact. Single-stranded pHV33 DNA is converted to double-stranded DNA by complementary strand synthesis probably initiated at rriB, a primosome assembly site present on pBR322. The efficiency of complementary strand synthesis affects the double-stranded copy number, which suggests that single-stranded DNA is a plasmid replication intermediate.  相似文献   

4.
RecA/Rad51 proteins are essential in homologous DNA recombination and catalyze the ATP-dependent formation of D-loops from a single-stranded DNA and an internal homologous sequence in a double-stranded DNA. RecA and Rad51 require a "recombination mediator" to overcome the interference imposed by the prior binding of single-stranded binding protein/replication protein A to the single-stranded DNA. Rad52 is the prototype of recombination mediators, and the human Rad52 protein has two distinct DNA-binding sites: the first site binds to single-stranded DNA, and the second site binds to either double- or single-stranded DNA. We previously showed that yeast Rad52 extensively stimulates Rad51-catalyzed D-loop formation even in the absence of replication protein A, by forming a 2:1 stoichiometric complex with Rad51. However, the precise roles of Rad52 and Rad51 within the complex are unknown. In the present study, we constructed yeast Rad52 mutants in which the amino acid residues corresponding to the second DNA-binding site of the human Rad52 protein were replaced with either alanine or aspartic acid. We found that the second DNA-binding site is important for the yeast Rad52 function in vivo. Rad51-Rad52 complexes consisting of these Rad52 mutants were defective in promoting the formation of D-loops, and the ability of the complex to associate with double-stranded DNA was specifically impaired. Our studies suggest that Rad52 within the complex associates with double-stranded DNA to assist Rad51-mediated homologous pairing.  相似文献   

5.
Activation of poly(ADP-ribose) polymerase-1 (PARP-1) is an immediate cellular reaction to DNA strand breakage as induced by alkylating agents, ionizing radiation, or oxidants. The resulting formation of protein-bound poly(ADP-ribose) facilitates survival of proliferating cells under conditions of DNA damage probably via its contribution to DNA base excision repair. In this study, we investigated the association of the amino-terminal DNA binding domain of human PARP-1 (hPARP-1 DBD) with a 5' recessed oligonucleotide mimicking a telomeric DNA end. We used the fluorescence of the Trp residues naturally occurring in the zinc finger domain of hPARP-1 DBD. Fluorescence intensity and fluorescence anisotropy measurements consistently show that the binding stoichiometry is two proteins per DNA molecule. hPARP-1 was found to bind the 5' recessed DNA end with a binding constant of approximately 10(14) M(-2) if a cooperative binding model is assumed. These results indicate that hPARP-1 DBD dimerizes during binding to the DNA target site. A footprint experiment shows that hPARP-1 DBD is asymmetrically positioned at the junction between the double-stranded and the single-stranded telomeric repeat. The largest contribution to the stability of the complex is given by nonionic interactions. Moreover, time-resolved fluorescence measurements are in line with the involvement of one Trp residue in the stacking interaction with DNA bases. Taken together, our data open new perspectives for interpretation of the selective binding of hPARP-1 to the junction between double- and single-stranded DNA.  相似文献   

6.
We have recently reported the crystal structure of the accessory subunit of mitochondrial DNA polymerase, pol gammaB, and identified a region of the protein involved in DNA binding. The DNA employed in previous studies was presumed to be single-stranded, because it was generated by single-sided PCR. Further characterization of this DNA indicated that, due to a strand transfer event during synthesis by single-sided PCR, the DNA adopts a double-stranded hairpin conformation under native conditions. We used a series of double- and single-stranded oligonucleotides of different lengths to confirm that human pol gammaB prefers to bind double-stranded DNA longer than 40 bp with little apparent sequence specificity. Site-specific deletion mutagenesis identified clusters of basic residues in two surface loops required for DNA binding located on opposite sides of the symmetrical pol gammaB dimer. A heterodimer of pol gammaB that contains one mutant and one wild-type DNA binding region was shown to be unable to bind double-stranded DNA, suggesting that a single DNA molecule must contact both DNA binding sites in the pol gammaB dimer. The ability to bind double-stranded DNA is not essential for pol gammaB stimulation of pol gammaA activity in vitro, but may play a role in DNA replication or repair.  相似文献   

7.
1. The hydrazine mustard spin label (HMSL), recently synthesized in our laboratory (Raikova, 1977) was used for spin-labelling of DNA. 2. It alkylates both double- and single-stranded DNAs. 3. The reaction of HMSL with DNA was studied with respect to the kinetics of alkylation, dependence on salt concentration and base specificity. 4. It was found that HMSL is a base-specific reagent, alkylating preferentially guanine. According to their ability to bind HMSL, the four deoxyribonucleotides are ordered in the following way: G greater than A greater than C greater than T. 5. The EPR spectra obtained strongly depended on the secondary structure of the spin-labelled DNA: unlike the immobilized spectra of the double-stranded DNAs (2AZZ = 44.8G), the EPR spectra of single-stranded DNAs were non-immobilized (2AZZ = 32.8 G). 6. When sheared double-stranded DNA was spin-labelled, the parameters of the EPR spectrum depended also on the GC content of DNA.  相似文献   

8.
9.
In relation to the question which DNA form (single- or double-stranded) is transferred by Agrobacterium tumefaciens to plant cells, we studied the behaviour of single-stranded DNA, as compared to double-stranded DNA, when it is introduced into plant protoplasts by electroporation. To this end, we cloned a construct with a plant NPTII gene as well as a CAT gene in the M13 vectors tg130 and tg131. We found that both complementary single-stranded molecules gave rise to substantial CAT activity in plant protoplasts, suggesting that single-stranded DNA is converted into double-stranded DNA by the plant cell replication machinery. Unexpectedly, we found that single-stranded DNA leads to a 3–10 fold higher frequency of stable transformation (selection for kanamycin resistance) than double-stranded DNA. These results indicate that the use of single-stranded DNA might be considered in experiments in which optimal transformation frequencies are needed, e.g. with protoplasts form recalcitrant plant species.Abbreviations ss single-stranded - ds double-stranded - CAT chloramphenicol acetyl transferase - NPTII neomycin phosphotransferase II - RT room temperature  相似文献   

10.
11.
DNA-dependent protein kinase (DNA-PK) is a DNA end-activated protein kinase composed of a catalytic subunit, DNA-PKcs, and a DNA binding subunit, Ku, that is involved in repair of DNA double-stranded breaks (DSBs). We have previously shown that DNA-PKcs interacts with single-stranded DNA (ssDNA) ends with a separate ssDNA binding site to be activated for its kinase activity. Here, the properties of the ssDNA binding site were examined by using DNA fragments with modified ssDNA extensions. DNA fragments with a wide range of ssDNA modifictations activated DNA-PKcs, indicating a relaxed specificity for the chemical structure of terminal nucleotides of a DSB. Methyl substitution of the phosphate backbone impaired kinase activation but not binding, indicating that interaction with the DNA backbone was involved in kinase activation. Experiments with RNA and RNA/DNA hybrid fragments suggested that the discrimination between RNA and DNA ends resides in the double-stranded DNA binding function of DNA-PKcs. DNA fragments exposing only one ssDNA end activated DNA-PKcs poorly, suggesting that DNA-PKcs distinguishes between DSBs and ssDNA breaks by simultaneous interaction with two ssDNA ends. These properties potentially explain how DNA-PKcs can be specifically activated by DSBs but still recognize the diverse chemical structures exposed when DSBs are introduced by ionizing radiation.  相似文献   

12.
13.
In cell extracts of Xenopus eggs which oscillate between S and M phases of the cell cycle, the onset of mitosis is blocked by the presence of incompletely replicated DNA. In this report, we show that several artificial DNA templates (M13 single-stranded DNA and double-stranded plasmid DNA) can trigger this feedback pathway, which inhibits mitosis. Single-stranded M13 DNA is much more effective than double-stranded plasmid DNA at inhibiting the onset of mitosis. Furthermore, we have shown that low levels of M13 single-stranded DNA and high levels of double-stranded plasmid DNA can elevate the tyrosine kinase activity responsible for phosphorylating p34cdc2, thereby inactivating maturation-promoting factor and inhibiting entry into mitosis. This constitutes a simplified system with which to study the signal transduction pathway from the DNA template to the tyrosine kinase responsible for inhibiting p34cdc2 activity.  相似文献   

14.
The recognition of double-stranded DNA breaks and single-stranded nicks by human poly(ADP-ribose) polymerase and the consequent enzymic activation were examined using derivatives of the enzyme expressed in Escherichia coli. The N-terminal 162 residues encompass two zinc fingers. Deletion or mutation of the first finger results in a loss of activation by DNA with either single-stranded or double-stranded damage. Destruction of the second finger reduces activation by double-stranded DNA breaks only slightly, but eliminates activation by single-stranded DNA nicks. These data suggest that activation by single-stranded DNA nicks requires two zinc fingers, but activation by double-stranded DNA breaks requires only the finger closer to the N terminus. Variant proteins that lack both zinc fingers are enzymically inactive but still exhibit weak DNA binding, which is independent of DNA damage. Thus, other regions are also capable of binding intact DNA, but the recognition of a strand nick or break which occasions the synthesis of poly(ADP-ribose) specifically requires the zinc fingers.  相似文献   

15.
The ATR kinase is a critical upstream component of a checkpoint pathway that responds to many forms of damaged and incompletely replicated DNA. Cellular processes such as DNA replication and repair are thought to convert these DNA lesions into a common DNA intermediate that activates this signaling pathway. Indeed, numerous studies have shown that two DNA structures formed during these processes – single-stranded DNA (ssDNA) and junctions between double-stranded DNA (dsDNA) and ssDNA – are important components of the ATR-activating structure. However, an unanswered question is whether primed ssDNA is sufficient for activation of the ATR response. We recently demonstrated that primed ssDNA is sufficient to induce a bona fide checkpoint response in Xenopus egg extracts. This is the first well-defined DNA structure capable of eliciting ATR activation. Using this structure, we examined the contribution of ds/ssDNA junctions and ssDNA to checkpoint activation. Our results indicate the context in which the checkpoint-activating structure is generated may contribute significantly to its signaling properties. Here we discuss the implications of our findings, in the context of other recent work in the field, on our understanding of checkpoint signaling.  相似文献   

16.
T4 UV endonuclease cleaves double- and single-stranded DNA with equal specificity for photo-pyrimidine dimers. Thus, the enzyme can be used for mapping and quantifying pyrimidine dimers in single-stranded DNA as well as in double-stranded DNA. Mapping of pyrimidine dimers shows that rates of UV-dimerization are not only affected by 5', 3' adjacent bases, but also by position within pyrimidine tracts. Di-pyrimidines at 3' ends of tracts are more photoreactive than those at 5' ends.  相似文献   

17.
18.
Enzyme-catalyzed DNA unwinding. The role of ATP in helicase III activity   总被引:2,自引:0,他引:2  
The enzyme helicase III catalyzes ATP-dependent unwinding of double-stranded DNA (Yarranto, G. T., Das, R. H., and Gefter, M. L. (1979) J. Biol. Chem. 254, 11997-12001). The free enzyme is able to bind to double- and single-stranded DNA. In the presence of ATP the enzyme can bind single- but not double-stranded DNA. The enzyme catalyzes an ADP-ATP exchange reaction in the absence of DNA. It is suggested that there is an enzyme.phosphate complex that discriminates between the two forms of DNA. These results are discussed in relation to a model that accounts for catalytic unwinding of DNA coupled to ATP hydrolysis.  相似文献   

19.
Dinh A  Mo YY 《BioTechniques》2005,38(4):629-632
Short hairpin RNA (shRNA) synthesized from vector-based expression is as effective as short interfering RNA (siRNA) synthesized in vitro for suppressing the expression of their corresponding genes. Recently, three groups independently reported a new technology to construct an shRNA library from cDNA, providing great hope for genome-wide functional screens in many biological systems. In the present study, we report an alternative approach to generate shRNA from cDNA. A major improvement was to use a nicking enzyme to open up the double-stranded DNA so that the loop region remains single-stranded while the rest of the DNA fragment is double-stranded at an elevated temperature (e.g., 72 degrees C). The single-stranded DNA was then converted into double-stranded DNA by Taq DNA polymerase using the existing strand in the double-stranded region as a primer. Thus, the extended product carried a palindromic structure of 19 bp separated by a loop. Finally, the DNA fragment was cloned into a vector that carries an H1 promoter at the upstream region and ends with 5Ts, a terminator for the Pol III polymerase, at the downstream region. To prove the principle, we constructed shRNA from green fluorescent protein (GFP) cDNA and successfully suppressed GFP expression. Consequently, this simplified approach provides a better alternative to generate shRNA libraries from cDNA. Such shRNA libraries can be used to identify potential siRNA target sequences and study gene functions by a variety of selection methods.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号