首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are using chimeric IgG antibodies consisting of murine variable regions joined to human constant regions as rheumatoid factor (RF) binding substrates to localize and map IgM RF binding sites on IgG. Using chimeric antibodies in a modified RF ELISA, we showed that RFs from rheumatoid arthritis (RA) and Waldenstrom's macroglobulinemia (WMac) patients differ in their binding specificities for IgG3, although some of these RFs share common specificity for IgG1, IgG2, and IgG4. By shuffling constant region domains between IgG3 and IgG4, we showed that sequence variation in the CH3 domain is responsible for WMac-derived RF differentiation of IgG3 and IgG4. By making site-directed mutations in the wild-type IgG3 or IgG4 human gamma constant genes, we showed that His-435 is an essential residue in RF binding to IgG for most WMac RFs. The allotypic polymorphism in IgG3 at 436 is not responsible for differences in previous reports of high-frequency IgG3 binding by WMac RFs. A amino acid loop in the CH2 domain of IgG4 proximal to the CH2-CH3 interface is important in WMac RF binding to IgG; a more distal CH2 loop in CH2 has a more variable effect on WMac RF binding. To evaluate the contribution of the N-linked carbohydrate moiety at Asn-297 to RF binding sites on IgG, we measured RF binding to aglycosylated IgG antibodies produced by mutating the glycosylation signal Asn-297 to another amino acid. Of all four IgG subclasses, only aglycosylated IgG3 was a better RF binding substrate than its glycosylated subclass counterpart.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Molecular analysis of IgM rheumatoid factor binding to chimeric IgG.   总被引:2,自引:0,他引:2  
To localize regions on IgG bound by rheumatoid factors (RF), we studied IgM RF binding to chimeric IgG antibodies consisting of murine V regions fused to human constant regions. Using a modified RF ELISA, we showed that polyclonal RF from rheumatoid arthritis patients bound IgG1, 2, and 4 strongly; IgG3 was also bound, although less well. The majority of 18 monoclonal RF from patients with Waldenstrom's macroglobulinemia bound IgG1, 2, and 4 only. In contrast to RF from RA, 14 of 18 monoclonal RF did not react with IgG3. Only 3 of 18 monoclonal RF bound IgG3 well. By shuffling C region domains between IgG3 and IgG4, we showed that sequence variation in the CH3 domain is responsible for the differential binding of monoclonal RF to IgG3 and IgG4. Hybrid IgG3/IgG4 antibodies containing the CH3 domain of IgG4 were bound by monoclonal RF, whereas those containing the CH3 domain of IgG3 were not. To evaluate the contribution of the N-linked carbohydrate moiety at Asn-297 to RF binding sites on IgG, we measured RF binding to aglycosylated IgG antibodies produced by mutating Asn-297 to another amino acid. Glycosylated and aglycosylated IgG1, 2, and 4 were bound identically by monoclonal and polyclonal RF. Aglycosylated IgG3, however, was bound better than glycosylated IgG3 by polyclonal RF and by IgG3-reactive monoclonal RF.  相似文献   

3.
Aglycosylated human IgG1 and IgG3 monoclonal anti-D (Rh) and human IgG1 and IgG3 chimaeric anti-5-iodo-4-hydroxy-3-nitrophenacetyl (anti-NIP) monoclonal antibodies produced in the presence of tunicamycin have been compared with the native glycosylated proteins with respect to recognition by human Fc gamma RI and/or Fc gamma RII receptors on U937, Daudi or K562 cells. Human red cells sensitized with glycosylated IgG3 form rosettes via Fc gamma RI with 60% of U937 cells. Inhibition of rosette formation required greater than 35-fold concentrated more aglycosylated than glycosylated human monoclonal anti-D (Rh) antibody. Unlabelled polyclonal human IgG and glycosylated monoclonal IgG1 and anti-D (Rh) antibody inhibited the binding of 125I-labelled monomeric human IgG binding by U937 Fc gamma RI at concentrations greater than 50-fold lower than the aglycosylated monoclonal IgG1 anti-D (Rh) (K50 approximately 3 x 10(-9) M and approximately 6 x 10(-7) M respectively). Similar results were obtained using glycosylated and aglycosylated monoclonal human IgG1 or IgG3 chimaeric anti-NIP antibody-sensitized red cells rosetting with Fc gamma RI-/Fc gamma RII+ Daudi and K562 cells. Rosette formation could be inhibited by the glycosylated form (at greater than 10(-6) M) but not by the aglycosylated form. Haemagglutination analysis using a panel of murine monoclonal antibodies specific for epitopes located on C gamma 2, C gamma 3 or C gamma 2/C gamma 3 interface regions did not demonstrate differences in Fc conformation between the glycosylated or aglycosylated human monoclonal antibodies. These data suggest that the Fc gamma RI and Fc gamma RII sites on human IgG are highly conformation-dependent and that the carbohydrate moiety serves to stabilize the Fc structure rather than interacting directly with Fc receptors.  相似文献   

4.
IgG has a long half-life through engagement of its Fc region with the neonatal Fc receptor (FcRn). The FcRn binding site on IgG1 has been shown to contain I253 and H310 in the CH2 domain and H435 in the CH3 domain. Altering the half-life of IgG has been pursued with the aim to prolong or reduce the half-life of therapeutic IgGs. More recent studies have shown that IgGs bind differently to mouse and human FcRn. In this study we characterize a set of hu3S193 IgG1 variants with mutations in the FcRn binding site. A double mutation in the binding site is necessary to abrogate binding to murine FcRn, whereas a single mutation in the FcRn binding site is sufficient to no longer detect binding to human FcRn and create hu3S193 IgG1 variants with a half-life similar to previously studied hu3S193 F(ab')2 (t1/2β, I253A, 12.23 h; H310A, 12.94; H435A, 12.57; F(ab')2, 12.6 h). Alanine substitutions in S254 in the CH2 domain and Y436 in the CH3 domain showed reduced binding in vitro to human FcRn and reduced elimination half-lives in huFcRn transgenic mice (t1/2β, S254A, 37.43 h; Y436A, 39.53 h; wild-type, 83.15 h). These variants had minimal effect on half-life in BALB/c nu/nu mice (t1/2β, S254A, 119.9 h; Y436A, 162.1 h; wild-type, 163.1 h). These results provide insight into the interaction of human Fc by human FcRn, and are important for antibody-based therapeutics with optimal pharmacokinetics for payload strategies used in the clinic.  相似文献   

5.
We describe the stabilization of human IgG1 Fc by an engineered interdomain disulfide bond at the C-terminal end of the molecule. Covalently interconnecting the C-termini of the CH(3) domains led to an increase of the melting temperatures by 5.6 and 9.1°C respectively as compared to CH(3) domains in the context of the wild-type Fc. Combined with a recently described additional intradomain disulfide bond, both novel disulfide bonds led to an increase of the Tm by about 18.1°C to 100.7°C. The interdomain disulfide bond had no impact on the thermal stability of the CH(2) domain. Far- and near-UV CD spectroscopy showed very similar overall CD profiles, indicating that secondary and tertiary structure of the Fc was not negatively affected. When introduced into an Fc fragment that had been engineered to bind to Her2/neu via a novel antigen binding site located at the C-terminus of the CH(3) domain, the novel inter- and intra-domain bonds also brought about a significant increase in thermostability. Using them in combination, the Tm of the CH(3) domain was raised by 18°C and thus restored to the Tm of the wild-type CH(3) domain. Importantly, antigen binding of the modified Fc was not affected by the engineered disulfide bonds.  相似文献   

6.
Binding of the Fc domain of Immunoglobulin G (IgG) to Fcγ receptors on leukocytes can initiate a series of signaling events resulting in antibody-dependent cell-mediated cytotoxicity (ADCC) and other important immune responses. Fc domains lacking glycosylation at N297 have greatly diminished Fcγ receptor binding and lack the ability to initiate a robust ADCC response. Earlier structural studies of Fc domains with either full length or truncated N297 glycans led to the proposal that these glycans can stabilize an "open" Fc conformation recognized by Fcγ receptors. We determined the structure of an E. coli expressed, aglycosylated human Fc domain at 3.1 ? resolution and observed significant disorder in the C'E loop, a region critical for Fcγ receptor binding, as well as a decrease in distance between the C(H)2 domains relative to glycosylated Fc structures. However, comparison of the aglycosylated human Fc structure with enzymatically deglycosylated Fc structures revealed large differences in the relative orientations and distances between C(H)2 domains. To provide a better appreciation of the physiologically relevant conformation of the Fc domain in solution, we determined Radii of Gyration (R(g)) by small-angle X-ray scattering (SAXS) and found that the aglycosylated Fc displays a larger R(g) than glycosylated Fc, suggesting a more open C(H)2 orientation under these conditions. Moreover, the R(g) of aglycosylated Fc was reduced by mutations at the C(H)2-C(H)3 interface (E382V/M428I), which confer highly selective binding to FcγRI and novel biological activities.  相似文献   

7.
The covalent binding of C3 (complement component C3) to antigen-antibody complexes (Ag.Ab; immune complexes (ICs)) is a key event in the uptake, transport, presentation, and elimination of Ag in the form of Ag.Ab.C3b (IC.C3b). Upon interaction of C3 with IgG.IC, C3b.C3b.IgG covalent complexes are formed that are detected on SDS-polyacrylamide gel electrophoresis by two bands corresponding to C3b.C3b (band A) and C3b.IgG (band B) covalent complexes. This allows one to evaluate the covalent binding of C3b to IgG antibodies. It has been described that C3b can attach to both the Fab (on the CH1 domain) and the Fc regions of IgG. Here the covalent interaction of C3b to the CH1 domain, a region previously described spanning residues 125-147, has been studied. This region of the CH1 domain is exposed to solvent and contains a cluster of six potential acceptor sites for ester bond formation with C3b (four Ser and two Thr). A set of 10 mutant Abs were generated with the putative acceptor residues substituted by Ala, and we studied their covalent interaction with C3b. Single (Ser-131, Ser-132, Ser-134, Thr-135, Ser-136, and Thr-139), double (positions 131-132), and multiple (positions 134-135-136, 131-132-134-135-136, and 131-132-134-135-136-139) mutants were produced. None of the mutants (single, double, or multiple) abolished completely the ability of IgG to bind C3b, indicating the presence of C3b binding regions other than in the CH1 domain. However, all mutant Abs, in which serine at position 132 was replaced by Ala, showed a significant decrease in the ability to form C3b.IgG covalent complexes, whereas the remaining mutants had normal activity. In addition we examined ICs using the F(ab')2 fragment of the mutant Abs, and only those containing Ala at position 132 (instead of Ser) failed to bind C3b. Thus Ser-132 is the binding site for C3b on the CH1 domain of the heavy chain, in the Fab region of human IgG.  相似文献   

8.
Therapeutic monoclonal antibodies have several advantages over small molecule drugs and small proteins and peptides, including a long serum half-life. The long serum half-life of IgG is due, in part, to its molecular weight (150kDa) and its ability to bind FcRn. Both the CH2 and CH3 domains of Fc are involved in FcRn binding. Antibody fragments and antibody-like scaffolds have improved penetration into tissues due to their small size, yet suffer from a short serum half-life of less than one hour. The human CH2 domain (CH2D) of IgG1 retains a portion of the FcRn binding site, is amenable to modification for target binding, and may represent the smallest antibody-like scaffold retaining a relatively long serum half-life. Here we describe the generation of a dimeric CH2D (dCH2D) and determination of its pharmacokinetics (PK), as well as the PK of wild-type monomeric CH2D (mCH2D) and a short stabilized CH2D variant (ssCH2D) in normal B6 mice, human FcRn transgenic mice and cynomolgus macaques. The elimination half-life of dCH2D was 9.9, 10.4 and 11.2 hours, and that of ssCH2D was 13.1, 9.9 and 11.4 hours, in B6 mice, hFcRn mice and cynomolgus macaques, respectively. These half-lives were slightly longer than that of mCH2D (6.9 and 8.8 hours) in B6 and hFcRn mice, respectively. These data demonstrate that engineered CH2D-based variants have relatively long serum half-lives, making them a unique scaffold suitable for development of targeted therapeutics.  相似文献   

9.
《MABS-AUSTIN》2013,5(8):1381-1390
ABSTRACT

Human IgG antibodies containing terminal alpha 2,6-linked sialic acid on their Fc N-glycans have been shown to reduce antibody-dependent cell-mediated cytotoxicity and possess anti-inflammatory properties. Although terminal sialylation on complex N-glycans can happen via either an alpha 2,3-linkage or an alpha 2,6-linkage, sialic acids on human serum IgG Fc are almost exclusively alpha 2,6-linked. Recombinant IgGs expressed in Chinese hamster ovary (CHO) cells, however, have sialic acids through alpha 2,3-linkages because of the lack of the alpha 2,6-sialyltransferase gene. The impact of different sialylation linkages to the structure of IgG has not been determined. In this work, we investigated the impact of different types of sialylation to the conformational stability of IgG through hydrogen/deuterium exchange (HDX) and limited proteolysis experiments. When human-derived and CHO-expressed IgG1 were analyzed by HDX, sialic acid-containing glycans were found to destabilize the CH2 domain in CHO-expressed IgG, but not human-derived IgG. When structural isomers of sialylated glycans were chromatographically resolved and identified in the limited proteolysis experiment, we found that only alpha 2,3-linked sialic acid on the 6-arm (the major sialylated glycans in CHO-expressed IgG1) destabilizes the CH2 domain, presumably because of the steric effect that decreases the glycan-CH2 domain interaction. The alpha 2,6-linked sialic acid on the 3-arm (the major sialylated glycan in human-derived IgG), and the alpha 2,3-linked sialic acid on the 3-arm, do not have this destabilizing effect.  相似文献   

10.
Antibodies bind foreign antigens with high affinity and specificity leading to their neutralization and/or clearance by the immune system. The conserved N-glycan on IgG has significant impact on antibody effector function, with the endoglycosidases of Streptococcus pyogenes deglycosylating the IgG to evade the immune system, a process catalyzed by the endoglycosidase EndoS2. Studies have shown that two of the four domains of EndoS2, the carbohydrate binding module (CBM) and the glycoside hydrolase (GH) domain are critical for catalytic activity. To yield structural insights into contributions of the CBM and the GH domains as well as the overall flexibility of EndoS2 to the proteins’ catalytic activity, models of EndoS2-Fc complexes were generated through enhanced-sampling molecular-dynamics (MD) simulations and site-identification by ligand competitive saturation (SILCS) docking followed by reconstruction and multi-microsecond MD simulations. Modeling results predict that EndoS2 initially interacts with the IgG through its CBM followed by interactions with the GH yielding catalytically competent states. These may involve the CBM and GH of EndoS2 simultaneously interacting with either the same Fc CH2/CH3 domain or individually with the two Fc CH2/CH3 domains, with EndoS2 predicted to assume closed conformations in the former case and open conformations in the latter. Apo EndoS2 is predicted to sample both the open and closed states, suggesting that either complex can directly form following initial IgG-EndoS2 encounter. Interactions of the CBM and GH domains with the IgG are predicted to occur through both its glycan and protein regions. Simulations also predict that the Fc glycan can directly transfer from the CBM to the GH, facilitating formation of catalytically competent complexes and how the 734 to 751 loop on the CBM can facilitate extraction of the glycan away from the Fc CH2/CH3 domain. The predicted models are compared and consistent with Hydrogen/Deuterium Exchange data. In addition, the complex models are consistent with the high specificity of EndoS2 for the glycans on IgG supporting the validity of the predicted models.  相似文献   

11.
We report the stabilization of the human IgG1 Fc fragment by engineered intradomain disulfide bonds. One of these bonds, which connects the N-terminus of the CH3 domain with the F-strand, led to an increase of the melting temperature of this domain by 10°C as compared to the CH3 domain in the context of the wild-type Fc region. Another engineered disulfide bond, which connects the BC loop of the CH3 domain with the D-strand, resulted in an increase of T(m) of 5°C. Combined in one molecule, both intradomain disulfide bonds led to an increase of the T(m) of about 15°C. All of these mutations had no impact on the thermal stability of the CH2 domain. Importantly, the binding of neonatal Fc receptor was also not influenced by the mutations. Overall, the stabilized CH3 domains described in this report provide an excellent basic scaffold for the engineering of Fc fragments for antigen-binding or other desired additional or improved properties. Additionally, we have introduced the intradomain disulfide bonds into an IgG Fc fragment engineered in C-terminal loops of the CH3 domain for binding to Her2/neu, and observed an increase of the T(m) of the CH3 domain for 7.5°C for CysP4, 15.5°C for CysP2 and 19°C for the CysP2 and CysP4 disulfide bonds combined in one molecule.  相似文献   

12.
Most of the therapeutic antibodies approved for clinical use are full-size IgG1 molecules. The interaction of the IgG1 Fc with the neonatal Fc receptor (FcRn) plays a critical role in maintaining their long half-life. We have hypothesized that isolated Fc domains could be engineered to functionally mimic full-size IgG1 (nanoantibodies) but with decreased (10-fold) size. Here, we report for the first time the successful generation of a soluble, monomeric CH3 domain (mCH3). In contrast to the wild-type dimeric CH3, the mCH3 exhibited pH-dependent binding to FcRn similar to that of Fc. The binding free energy of mCH3 to FcRn was higher than that of isolated CH2 but lower than that of Fc. Therefore, CH3 may contribute a larger portion of the free energy of binding to FcRn than CH2. A fusion protein of mCH3 with an engineered antibody domain (m36.4) also bound to FcRn in a pH-dependent fashion and exhibited significantly higher neutralizing activity against HIV-1 than m36.4-Fc fusion proteins. The m36.4-mCH3 fusion protein was monomeric, stable, soluble, and expressed at a high level in Escherichia coli. We also found that engineering an additional disulfide bond in mCH3 remarkably increased its thermal stability, whereas the FcRn binding was not affected. These data suggest that mCH3 could not only help in the exploration of the dual mechanisms of the CH3 contribution to Fc functions (dimerization and FcRn interactions) but could also be used for the development of candidate therapeutics with optimized half-life, enhanced tissue penetration, access to sterically restricted binding sites, and increased therapeutic efficacy.  相似文献   

13.
《MABS-AUSTIN》2013,5(4):466-474
Therapeutic monoclonal antibodies have several advantages over small molecule drugs and small proteins and peptides, including a long serum half-life. The long serum half-life of IgG is due, in part, to its molecular weight (150kDa) and its ability to bind FcRn. Both the CH2 and CH3 domains of Fc are involved in FcRn binding. Antibody fragments and antibody-like scaffolds have improved penetration into tissues due to their small size, yet suffer from a short serum half-life of less than one hour. The human CH2 domain (CH2D) of IgG1 retains a portion of the FcRn binding site, is amenable to modification for target binding, and may represent the smallest antibody-like scaffold retaining a relatively long serum half-life. Here we describe the generation of a dimeric CH2D (dCH2D) and determination of its pharmacokinetics (PK), as well as the PK of wild-type monomeric CH2D (mCH2D) and a short stabilized CH2D variant (ssCH2D) in normal B6 mice, human FcRn transgenic mice and cynomolgus macaques. The elimination half-life of dCH2D was 9.9, 10.4 and 11.2 hours, and that of ssCH2D was 13.1, 9.9 and 11.4 hours, in B6 mice, hFcRn mice and cynomolgus macaques, respectively. These half-lives were slightly longer than that of mCH2D (6.9 and 8.8 hours) in B6 and hFcRn mice, respectively. These data demonstrate that engineered CH2D-based variants have relatively long serum half-lives, making them a unique scaffold suitable for development of targeted therapeutics.  相似文献   

14.
Cyanogen bromide fragments of murine IgG2b and IgG2a immunoglobulins were used to localize the sequences that are bound by specific IgG2b and IgG2a Fc receptors on murine macrophages. One fragment from the CH2 domain of IgG2b bound to the gamma 2b Fc receptor. Two fragments from IgG2a--one one from the CH2 domain, differing by only four amino acids from the homologous IgG2b fragment, and the other from the CH3 domain--specifically bound to the gamma 2a Fc receptor. In both a rosetting assay and a radioactive binding assay, these two fragments from IgG2a competed with intact IgG2a: however, they did not compete with each other. Rather, binding of the fragment from the CH3 domain of IgG2a augmented the binding of the fragment from the CH2 domain of IgG2a but not that of the homologous fragment from IgG2b. The binding of both IgG2a fragments was abolished by trypsin treatment of macrophages. These data suggest that 1) a sequence in the CH2 domain of IgG2b is sufficient for binding to the gamma 2b Fc receptor, 2) sequences from both the CH2 and CH3 domains of IgG2a bind to the gamma 2a Fc receptor, and 3) the binding of sequences from the CH3 domain of IgG2a may induce a conformational change in the gamma 2a Fc receptor that leads to enhanced binding of sequences from the CH2 domain.  相似文献   

15.
Four murine IgG subclasses display markedly different Fc-associated effector functions because of their differential binding to three activating IgG Fc receptors (FcgammaRI, FcgammaRIII, and FcgammaRIV) and C1q. Previous analysis of IgG subclass switch variants of 34-3C anti-RBC monoclonal autoantibodies revealed that the IgG1 subclass, which binds only to FcgammaRIII and fails to activate complement, displayed the poorest pathogenic potential. This could be related to the presence of a three amino acid deletion at positions 233-235 in the CH2 domain uniquely found in this subclass. To address this question, IgG1 insertion and IgG2b deletion mutants at positions 233-235 of 34-3C anti-RBC Abs were generated, and their ability to initiate effector functions and their pathogenicity were compared with those of the respective wild-type Abs. The insertion of amino acid residues at positions 233-235 enabled the IgG1 subclass to bind FcgammaRIV but did not improve the binding to C1q. Accordingly, its pathogenicity was enhanced but still inferior to that of IgG2b. In contrast, the IgG2b deletion mutant lost its ability to bind to FcgammaRIV and activate complement. Consequently, its pathogenicity was markedly diminished to a level comparable to that of IgG1. Our results demonstrated that the initiation of FcgammaR- and complement-mediated effector functions of IgG2b was profoundly affected by the three amino acid deletion at positions 233-235, but that this natural three amino acid deletion could only partially explain the poor binding of IgG1 to FcgammaRIV and C1q. This indicates the lack in the IgG1 subclass of as yet unknown motifs promoting efficient interaction with FcgammaRIV and C1q.  相似文献   

16.
Ha S  Ou Y  Vlasak J  Li Y  Wang S  Vo K  Du Y  Mach A  Fang Y  Zhang N 《Glycobiology》2011,21(8):1087-1096
N-glycosylation of immunoglobulin G (IgG) at asparigine residue 297 plays a critical role in antibody stability and immune cell-mediated Fc effector function. Current understanding pertaining to Fc glycosylation is based on studies with IgGs that are either fully glycosylated [both heavy chain (HC) glycosylated] or aglycosylated (neither HC glycosylated). No study has been reported on the properties of hemi-glycosylated IgGs, antibodies with asymmetrical glycosylation in the Fc region such that one HC is glycosylated and the other is aglycosylated. We report here for the first time a detailed study of how hemi-glycosylation affects the stability and functional activities of an IgG1 antibody, mAb-X, in comparison to its fully glycosylated counterpart. Our results show that hemi-glycosylation does not impact Fab-mediated antigen binding, nor does it impact neonatal Fc receptor binding. Hemi-glycosylated mAb-X has slightly decreased thermal stability in the CH2 domain and a moderate decrease (~20%) in C1q binding. More importantly, the hemi-glycosylated form shows significantly decreased binding affinities toward all Fc gamma receptors (FcγRs) including the high-affinity FcγRI, and the low-affinity FcγRIIA, FcγRIIB, FcγRIIIA and FcγRIIIB. The decreased binding affinities to FcγRs result in a 3.5-fold decrease in antibody-dependent cell cytotoxicity (ADCC). As ADCC often plays an important role in therapeutic antibody efficacy, glycosylation status will not only affect the antibody quality but also may impact the biological function of the product.  相似文献   

17.
Site-specific N-glycosylation of chicken serum IgG   总被引:2,自引:0,他引:2  
Suzuki N  Lee YC 《Glycobiology》2004,14(3):275-292
Avian serum immunoglobulin (IgG or IgY) is functionally equivalent to mammalian IgG but has one additional constant region domain (CH2) in its heavy (H) chain. In chicken IgG, each H-chain contains two potential N-glycosylation sites located on CH2 and CH3 domains. To clarify characteristics of N-glycosylation on avian IgG, we analyze N-glycans from chicken serum IgG by derivatization with 2-aminopyridine (PA) and identified by HPLC and MALDI-TOF-MS. There were two types of N-glycans: (1) high-mannose-type oligosaccharides (monoglucosylated 26.8%, others 10.5%) and (2) biantennary complex-type oligosaccharides (neutral, 29.9%; monosialyl, 29.3%; disialyl, 3.7%) on molar basis of total N-glycans. To investigate the site-specific localization of different N-glycans, chicken serum IgG was digested with papain and separated into Fab [containing variable regions (VH + VL) + CH1 + CL] and Fc (containing CH3 + CH4) fragments. Con A stained only Fc (CH3 + CH4) and RCA-I stained only Fab fractions, suggesting that high-mannose-type oligosaccharides were located on Fc (CH3 + CH4) fragments, and variable regions of Fab contains complex-type N-glycans. MS analysis of chicken IgG-glycopeptides revealed that chicken CH3 domain (structurally equivalent to mammalian CH2 domain) contained only high-mannose-type oligosaccharides, whereas chicken CH2 domain contained only complex-type N-glycans. The N-glycosylation pattern on avian IgG is more analogous to that in mammalian IgE than IgG, presumably reflecting the structural similarity to mammalian IgE.  相似文献   

18.
The properties of IgG and its subcomponents are being exploited to generate new therapeutics with selected biological activities. In this study, a series of truncated, humanized IgG1 antibodies was expressed in Chinese hamster ovary cells, to evaluate the contribution of structural components to glycosylation and function. The series includes L243 IgG1 (alpha-MHC Class II) lacking a CH3 domain pair (DeltaCH3-IgG1), single-chain Fv fusion proteins with Fc or a hinge-CH2 domain, Fc with/out a hinge, and a single CH2 domain. Glycosylation of IgG Fc is important for recognition by effector ligands such as Fcgamma receptors. HPLC analysis of released and pyridylaminated oligosaccharides indicates that intact IgG1 and scFvFc antibodies are galactosylated and sialylated to levels similar to those observed previously for normal human IgG1. The truncated forms express increased levels of digalactosylated (30-83%) or sialylated (9-21%) oligosaccharide chains with the highest levels observed for the single CH2 domain. These data show which architectural components influence IgG glycosylation processing and that the (CH3)2 pair is particularly influential. When MHC Class II bearing (JY) cells were sensitized with L243 DeltaCH3-IgG1, scFvFc, or scFvhCH2 they elicited superoxide production, from U937 cells, at levels of 35-45% relative to that obtained for intact L243 IgG1 (100%). Mild reduction and alkylation of the hinge disulphide bonds of scFvhCH2 greatly decreased its capacity to trigger superoxide production. Thus, the L243 scFvhCH2 homo-dimer constitutes the minimal truncated form that binds the MHC Class II antigen and triggers superoxide production through FcgammaRI.  相似文献   

19.
One of the most important but still poorly understood issues in protein chemistry is the relationship between sequence and stability of proteins. Here, we present a method for analyzing the influence of each individual residue on the foldability and stability of an entire protein. A randomly mutated library of the crystallizable fragment of human immunoglobulin G class 1 (IgG1-Fc) was expressed on the surface of yeast, followed by heat incubation at 79 °C and selection of stable variants that still bound to structurally specific ligands. High throughput sequencing allowed comparison of the mutation rate between the starting and selected library pools, enabling the generation of a stability landscape for the entire CH3 domain of human IgG1 at single residue resolution. Its quality was analyzed with respect to (i) the structure of IgG1-Fc, (ii) evolutionarily conserved positions and (iii) in silico calculations of the energy of unfolding of all variants in comparison with the wild-type protein. In addition, this new experimental approach allowed the assignment of functional epitopes of structurally specific ligands used for selection [Fc γ‐receptor I (CD64) and anti-human CH2 domain antibody] to distinct binding regions in the CH2 domain.  相似文献   

20.
哮喘、过敏性鼻炎、特应性皮炎及食物过敏等疾病为一类常见疾病,但存在治疗效果不佳,患者病程长等特点。IgE 分子是导致过敏性疾病的关键分子。抑制IgE分子与效应细胞膜表面FcεRI受体的结合可抑制过敏反应的发生。通过克隆FcεRI受体α亚基的cDNA与IgG2的稳定区铰链区、CH2和CH3的cDNA连接,以二聚化融合蛋白sFcεRIα/mIg(IgG2)的形式在CHO细胞中表达,达到提高sFcεRIα生物半衰期的目的。表达载体构建和初步的功能性试验等一系列研究证实,所表达的融合蛋白的分子量为170kDa,并与人IgE和鼠IgE有较好的结合活性。这些研究为该融合蛋白最终实现产业化打下良好基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号