首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and sensitive liquid chromatography/tandem mass spectrometry (LC-MS/MS) method using an atmospheric pressure chemical ionization source (APCI) for the quantification of fenretinide (4-HPR) in mouse plasma was developed and validated. After a simple protein precipitation of plasma sample by acetonitrile, 4-HPR was analyzed by LC-APCI-MS/MS. High-performance liquid chromatography (HPLC) separation was conducted on a Hypurity C18 column (50mmx2.1mm, 5microm) with a flow rate 0.60mL/min using a gradient mobile phase comprised of 0.05% formic acid in water (A) and methanol (B), and a run time of 4.5min. The elimination of a tedious sample preparation process and a shorter run time substantially reduced total analysis time. The method was linear over the range 0.5-100ng/mL, with r>0.998. The intra- and inter-assay precisions were 1.4-9.2% and 5.1-8.2%, respectively, and the intra- and inter-assay accuracies were 93.9-98.6% and 92.7-95.3%, respectively. The absolute recoveries were 90.3% (1.5ng/mL), 97.0% (7.5ng/mL) and 92.1% (75.0ng/mL) for 4-HPR, and 99.1% for the internal standard (150ng/mL). The analytical method had excellent sensitivity using a small sample volume (30microL) with the lower limit of quantification (LLOQ) 0.5ng/mL. This method is robust and has been successfully employed in a pharmacokinetic study of 4-HPR in a mouse xenograft model of neuroblastoma.  相似文献   

2.
A capillary electrophoresis method was developed for the enantioselective quantification of methadone (MTD) and its main metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenyl-pyrrolidine (EDDP). The enantiomers of MTD and EDDP were resolved by CE in 5min using 0.2% highly sulphated gamma-cyclodextrins as chiral selectors and a 50mM phosphate solution at pH 4.5 as background electrolyte. The optimized method was applied and validated for oral fluid testing. Linear relationships were obtained for MTD enantiomers in the range of 8.1-625ng/mL and in the range of 7.6-500ng/mL for EDDP enantiomers. The detection limits ranged from 2.3 to 2.4ng/mL, whereas the limits of quantification ranged from 7.6 to 8.1ng/mL. Intra- and inter-assay precision and accuracy were acceptable, respectively. The method was applied to the analyses of 60 oral fluid specimens obtained from patients enrolled in a MTD maintenance programme. Our data pointed out that higher concentrations of (R)-MTD and the enantioselective excess of (S)-EDDP in OF may reflect the free fraction of MTD and EDDP enantiomers in plasma.  相似文献   

3.
We developed and validated a simple, rapid, and accurate HPLC-MS/MS method with simple protein precipitation for the determination of orphenadrine. Injection-to-injection running time was 3 min with a retention time of orphenadrine of 1.1 min. The linear assay range was 1-200 ng/mL (r2 > 0.99). The intra- and inter-assay imprecisions were CV 0.6-4.2% and CV 1.6-6.1%, respectively. The accuracy, extraction recovery, specificity and stability were satisfactory. Using the measured plasma concentrations of orphenadrine in 24 healthy subjects, pharmacokinetic profiles of orphenadrine were evaluated (AUC(0-72,) 1565+/-731 ng h/mL, Cmax 82.8+/-26.2 ng/mL, Tmax 3.0+/-0.9 h, elimination half-life 25.8+/-10.3 h).  相似文献   

4.
A highly sensitive and specific LC-MS method was developed and validated for the quantification of digoxin in human plasma and urine using d5-dihydrodigoxin as internal standard (IS). The assay procedure involved extraction of digoxin and IS from human plasma with chloroform-isopropanol (95:5, v/v). Chromatogrphic separation was achieved on a Spherisorb ODS2 column using a gradient mobile phase with 5 mmol/L ammonium acetate in water with 1% acetic acid and acetonitrile. The mass spectrometer was operated in the selected ion monitoring mode using the respective [M+K](+) ions, m/z 819.4 for digoxin and m/z 826.4 for IS. The method was proved to be accurate and precise at linearity range of 0.12-19.60 ng/mL in plasma with a correlation coefficient (r(2)) of >or=0.9968 and 1.2-196.0 ng/mL in urine. The limit of quantification achieved with this method was 0.12 ng/mL in plasma and 1.2 ng/mL in urine. The intra- and inter-assay precision and accuracy values were found to be within the assay variability limits as per the FDA guidelines. The developed assay method was successfully applied to a pharmacokinetic study in human volunteers following intravenous administration of digoxin.  相似文献   

5.
An analytical method based upon liquid chromatography coupled to ion trap mass spectrometry (MS) detection with electrospray ionization interface has been developed for the simultaneous identification and quantification of droperidol and ondansetron in human plasma. The two drugs were isolated from 0.5 mL of plasma using a basic liquid-liquid extraction with diethyl ether/heptane (90/10, v/v) and tropisetron and haloperidol as internal standards, with satisfactory extraction recoveries. They were separated on a 5-μm C(18) Highpurity column (150 mm×2.1 mm I.D.) maintained at 30°C. The elution was achieved isocratically with a mobile phase of 2 mM HCOONH(4) pH 3.8 buffer/acetonitrile (60/40, v/v) at a flow rate of 200 μL/min. Data were collected either in full-scan MS mode at m/z 100-450 or in full-scan MS-MS mode, selecting the [M+H] (+) ion at m/z=294.0 for ondansetron, m/z=285.2 for tropisetron, m/z=380.0 for droperidol and m/z=376.0 for haloperidol. The most intense daughter ion of ondansetron (m/z=212.0) and droperidol (m/z=194.0) were used for quantification. Retention times for tropisetron, ondansetron, droperidol and haloperidol were 2.50, 2.61, 3.10 and 4.68 min, respectively. Calibration curves were linear for both compounds in the 0.50-500 ng/mL range. The limits of detection and quantification were 0.10 ng/mL and 0.50 ng/mL, respectively. The intra- and inter-assay precisions were lower than 6.4% and intra- and inter-assay recoveries were in the 97.6-101.9% range for the three 3, 30 and 300 ng/mL concentrations. This method allows simultaneous and rapid measurement of droperidol and ondansetron, which are frequently co-administrated for the prevention of postoperative nausea and vomiting.  相似文献   

6.
The objective was to validate a high-sensitivity chemiluminescent assay of serum progesterone concentrations for pregnancy diagnosis in manatees. Assay analytical sensitivity was 0.1 ng/mL, with mean intra- and inter-assay coefficients of variation of 9.7 and 9.2%, respectively, and accuracy had a mean adjusted R(2) of 0.98. Methods comparison (relative to Siemen's Coat-A-Count RIA) demonstrated r=0.98, Deming regression slope of 0.95, and an intercept of 0.01. Based on ROC analysis, a progesterone concentration >or=0.4 ng/mL was indicative of pregnancy. Assay results were not significantly altered by two freeze-thaw cycles of samples. Characteristic progesterone concentrations during pregnancy were Months 1-4 (1.7-4.7 ng/mL), 5-8 ( approximately 1.0 ng/mL), and 10 and 11 (0.3-0.5 ng/mL), whereas two late-pregnant females with impending abortion had progesterone concentrations of 0.1 ng/mL. Among pregnant females, maximum progesterone concentrations occurred in autumn (3.9+/-1.8 ng/mL), and were greater during all seasons than concentrations in non-pregnant females (0.1-0.2 ng/mL). Progesterone concentrations were also significantly higher in pregnant females than in non-pregnant females and males. This highly sensitive, specific, and diagnostic assay will be valuable for monitoring pregnancy and abortion in manatees.  相似文献   

7.
A sensitive rapid method for the simultaneous determination of four major active alkaloids (dehydrocavidine, coptisine, dehydroapocavidine, and tetradehydroscoulerine, in abbreviation thereafter called YHL-I, YHL-II, YHL-III, and YHL-IV, respectively) from a Chinese traditional medicine Corydalis saxicola Bunting. (Yanhuanglian) in rat plasma and urine was established and validated. The assay for these substances in plasma and urine was based on HPLC coupled with tandem mass spectrometry (MS/MS) detection using multiple reaction monitoring mode (MRM) with berberine and clenbuterol as internal standards. The plasma and urine sample were deproteinated by adding methanol prior to liquid chromatography where separation was performed on a Luna column (5 microm, 100 x 2.00 mm) and an Agilent Zorbax SB-C18 guard column (5 microm, 20 x 4 mm). The method was validated with the concentration range 1-1000 ng/mL in plasma and 10-1000 ng/mL in urine for the four test compounds, and the calibration curves were linear with correlation coefficients >0.999. The lowest limits of quantitation for all four substances were 1 ng/mL in 0.1 mL rat plasma and 10 ng/mL in 0.1 mL urine. The intra-assay accuracy and precision in plasma ranged from 88.1 to 115.7% and 1.4 to 10.8%, respectively, while inter-assay accuracy and precision for YHL-I, YHL-II, YHL-III, and YHL-IV ranged from 96.2 to 113.2% and 0.4 to 16.9%, respectively. The intra-assay accuracy and precision for YHL-I, YHL-II, YHL-III, and YHL-IV in rat urine ranged from 96.1 to 112.9% and 1.2 to 8.3%, respectively, while inter-assay accuracy and precision ranged from 95.0 to 106.8% and 2.2 to 10.3%, respectively. The method was further applied to assess pharmacokinetics and urine excretion of the four alkaloids after oral and intravenous administration to rats. Practical utility of this new LC-MS-MS method was confirmed in pilot pharmacokinetic studies in rats following both intravenous and oral administration.  相似文献   

8.
Methadone and buprenorphine are two of the drugs most frequently used for abstinence from illicit opioids and in the treatment of pain. A sensitive and selective high-performance liquid chromatographic method with diode array detection for the simultaneous determination of methadone, buprenorphine and norbuprenorphine has been developed. Separation of the three analytes was obtained by using a reversed-phase column (C8, 250mmx4.6mm i.d., 5microm) and a mobile phase composed of 40% phosphate buffer containing triethylamine, 50% methanol and 10% acetonitrile (final apparent pH 6.0). Loxapine was used as the internal standard. An accurate pre-treatment procedure of biological samples was developed, using solid-phase extraction with C8 cartridges (100mg, 1mL) and needing small amounts of plasma or urine (300microL). The calibration curves were linear over a working range of 10.0-1500.0ng/mL for methadone and of 5.0-500.0ng/mL for buprenorphine and norbuprenorphine in both matrices. The limit of quantitation (LOQ) and the limit of detection (LOD) were 1.0 and 0.4ng/mL for methadone and 0.5 and 0.2ng/mL for both buprenorphine and norbuprenorphine, respectively. The method was successfully applied to the analysis of plasma and urine samples from patients undergoing treatment with these drugs. Precision and accuracy results were satisfactory and no interference from endogenous or exogenous compounds was found. The method is suitable for the simultaneous determination of methadone and buprenorphine in human plasma and urine for therapeutic drug monitoring purposes.  相似文献   

9.
PM01218 is a novel marine-derived alkaloid and has shown potent growth inhibitory activity against several human cancer cell lines. A rapid and sensitive high performance liquid chromatography/tandem mass spectrometry (HPLC-MS/MS) method was developed and validated to quantify PM01218 in mouse and rat plasma. The lower limit of quantitation (LLOQ) was 0.05 ng/mL. The calibration curve was linear from 0.05 to 100 ng/mL (R(2)>0.999). The assay was specifically based on the multiple reaction monitoring (MRM) transitions at m/z 278.4-->184.2, no endogenous material interfaced with the analysis of PM01218 and its internal standard from blank mouse and rat plasma. The mean intra- and inter-day assay accuracy remained below 15 and 8%, respectively, for all calibration standards and QC samples. The intra- and inter-day assay precision was less than 12.8 and 8.5% for all QC levels, respectively. The utility of the assay was demonstrated by pharmacokinetics studies of i.v. (bolus) PM01218 on SD rats.  相似文献   

10.
Boulton DW  Devane CL 《Chirality》2000,12(9):681-687
Methadone enantiomers and EDDP, the main metabolite of methadone, were separated (R(s) = 2.0 for methadone enantiomers) following liquid-liquid extraction from human serum and urine followed by reverse-phase high-performance liquid chromatography on a derivatized beta-cyclodextrin column and quantified at therapeutic concentrations with ultraviolet detection. Detector response was linear (r(2) > 0.98) to 1,000 and 2,500 ng x mL(-1) for methadone enantiomers and EDDP, respectively. The limit of quantification from a 1-mL biological sample was 2.5 and 5 ng x mL(-1) for methadone enantiomers and EDDP, respectively. Interday variation was <13% and intraday variation was <8% for the analytes of interest. The assay was applied to plasma protein and erythrocyte binding studies and a 96-h pharmacokinetic study in two healthy female volunteers following oral dosing with rac-methadone. The binding of methadone to plasma proteins was enantioselective with the active (-)-(R) enantiomer having the highest free fraction (mean +/- SD: 21.2+/-7.6% vs. 13.3+/-6.2% for (+)-(S)-methadone, n = 8). Binding of methadone to erythrocytes was not apparently enantioselective (38.6+/-1.3% and 38.1+/-1.4% bound for (-)-(R)- and (+)-(S)-methadone, respectively). The pharmacokinetic study revealed enantioselective disposition of methadone in one volunteer but not in the other. EDDP was observed in urine but was only in small or undetectable concentrations in serum. The method is applicable to in vitro and pharmacokinetic studies of rac-methadone disposition in humans.  相似文献   

11.
A simple detection system with a high-performance liquid chromatography (HPLC) with positive ionisation-tandem mass spectrometry (ESI-MS/MS) for determining diphemanil methylsulphate (DMS) levels in human plasma using 4-diphemanylmethylene,1-methylpiperidine as an internal standard (I.S.), is proposed. The acquisition was performed with the multiple reactional monitoring (MRM) mode, by monitoring the transitions: m/z 278>262 for DMS and m/z 263>247 for the I.S. The method involved a simple single-step deproteinisation with acetonitrile. The analyte was chromatographed on a Zorbax C18 reversed-phase chromatographic column by isocratic elution with 10(-3)M ammonium acetate and 10(-3)M hexafluorobutyric acid, adjusted to pH 7.0 with ammoniac/acetonitrile (40/60, v/v). The results were linear over the studied range (0.5-50.0 ng mL(-1)) and the total analysis time for each run was 10 min. The mean extraction apparent recoveries expressed at the 95% intervals of confidence were 94-104% for DMS and 92-106% for the I.S. The intra- and inter-assay precisions were 4.6-8.4% and 2.9-10.6%, respectively. The limit of quantification was 0.15 ng mL(-1). The devised assay was successfully applied to the residual concentrations monitoring in infant.  相似文献   

12.
A sensitive and enantioselective method was developed and validated for the determination of ondansetron enantiomers in human plasma using enantioselective liquid chromatography-tandem mass spectrometry. The enantiomers of ondansetron were extracted from plasma using ethyl acetate under alkaline conditions. HPLC separation was performed on an ovomucoid column using an isocratic mobile phase of methanol-5 mM ammonium acetate-acetic acid (20:80:0.02, v/v/v) at a flow rate of 0.40 mL/min. Acquisition of mass spectrometric data was performed in multiple reaction monitoring mode, using the transitions of m/z 294-->170 for ondansetron enantiomers, and m/z 285-->124 for tropisetron (internal standard). The method was linear in the concentration range of 0.10-40 ng/mL for each enantiomer using 200 microL of plasma. The lower limit of quantification (LLOQ) for each enantiomer was 0.10 ng/mL. The intra- and inter-assay precision was 3.7-11.6% and 5.6-12.3% for R-(-)-ondansetron and S-(+)-ondansetron, respectively. The accuracy was 100.4-107.1% for R-(-)-ondansetron and 103.3-104.9% for S-(+)-ondansetron. No chiral inversion was observed during the plasma storage, preparation and analysis. The method was successfully applied to characterize the pharmacokinetic profiles of ondansetron enantiomers in healthy volunteers after an intravenous infusion of 8 mg racemic ondansetron.  相似文献   

13.
A sensitive, specific, accurate and reproducible analytical method employing a divalent cation chelating agent (disodium EDTA) for sample treatment was developed to quantitate reserpine in FVB/N mouse plasma. Samples pretreated with 40 μl of 2% disodium EDTA in water were extracted by a semi-automated 96-well liquid–liquid extraction (LLE) procedure to isolate reserpine and a structural analog internal standard (I.S.), rescinnamine, from mouse plasma. The extracts were analyzed by turbo ionspray liquid chromatography–tandem mass spectrometry (LC–MS–MS) in the positive ion mode. Sample preparation time for conventional LLE was dramatically reduced by the semi-automated 96-well LLE approach. The assay demonstrated a lower limit of quantitation of 0.02 ng/ml using 0.1-ml plasma sample aliquots. The calibration curves were linear from 0.02 to 10 ng/ml for reserpine. The intra- and inter-assay precision of quality control (QC) samples ranged from 1.75 to 10.9% for reserpine. The intra- and inter-assay accuracy of QC samples ranged from −8.17 to 8.61%. Reserpine and the I.S. were found to be highly bound to FVB/N mouse plasma protein. This is the first report of disodium EDTA employed as a special protein-bound release agent to recover protein-bound analytes from plasma. These matrix effects and the effects of pH in the HPLC mobile phase on the sensitivities of LC–MS–MS are discussed in this paper.  相似文献   

14.
A sensitive, simple and fast liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method for the determination of proguanil (PG) and its metabolites, cycloguanil (CG) and 1-(4-chlorophenyl)biguanide (4CPB), was developed and validated over a concentration range of 1-2000 ng/mL using only 50 microL of blood or plasma. After a simple solvent precipitation procedure, the supernatant was analysed directly by HPLC-MS/MS. Separation was achieved using an ethyl-linked phenyl reverse phase column with polar endcapping with an acetonitrile-water-formic acid gradient. Mass spectrometry was performed using a triple quadrupole mass spectrometer operating in positive electrospray ionization mode. The elution of PG (254.07-->169.99), CG (252.12-->195.02) and 4CPB (212.06-->153.06) was monitored using selected reaction monitoring. The three compounds and the internal standard (chloroproguanil) were well separated by HPLC and no interfering peaks were detected at the usual concentrations found in blood and plasma. The limit of quantification of PG and CG was 1 ng/mL and 5 ng/mL for 4CPB in rat blood and plasma. The extraction efficiency of PG, CG and 4CPB from rat blood and plasma was higher than 73%. The intra- and inter-assay variability of PG, CG and 4CPB were within 12% and the accuracy within +/-5%. This new assay offers higher sensitivity and a much shorter run time over earlier methods.  相似文献   

15.
This paper describes a method of determining clioquinol levels in hamster plasma and tissue by means of HPLC and electrochemical detection. Clioquinol was separated on a Nucleosil C18 300 mm x 3.9 mm i.d. 7 microm column at 1 ml/min using a phosphate/citrate buffer 0.1M (400 ml) with 600 ml of a methanol:acetonitrile (1:1, v/v) mobile phase. The retention times of clioquinol and the IS were, respectively, 11.6 and 8.1 min; the quantitation limit (CV>8%) was 5 ng/ml in plasma and 10 ng/ml in tissues. The intra- and inter-assay accuracies of the method were more than 95%, with coefficients of variation between 3.0 and 7.7%, and plasma and tissue recovery rates of 72-77%. There was a linear response to clioquinol 5-2000 ng/ml in plasma, and 10-1000 ng/g in tissues. The method is highly sensitive and selective, makes it possible to study the pharmacokinetics of plasma clioquinol after oral administration and the distribution of clioquinol in tissues, and could be used to monitor plasma clioquinol levels in humans.  相似文献   

16.
We produced antiserum to insulin-like growth factor I (IGF-I), and developed a specific and sensitive radioimmunoassay (RIA) for IGF-I using the biosynthetic IGF-I. This antiserum to IGF-I was specific for IGF-I; no cross-reactivities with multiplication stimulating activity, porcine insulin or human growth hormone (hGH) were detected. The sensitivity was 10-25 pg/tube with 50% displacement at 125 pg/tube. The intra- and inter-assay coefficients of variation for IGF-I were 5.4 and 9.7%, respectively. The plasma IGF-I levels as determined by RIA in normal adults (N = 46), patients with active acromegaly (N = 31), and pituitary dwarfs (N = 31) were 21.6 +/- 1.0, 157.3 +/- 17.0, and 2.5 +/- 0.3 ng/ml (Mean +/- SEM), respectively, indicating the levels were GH-dependent. The plasma IGF-I levels were significantly increased from 2.2 +/- 0.2 to 26.5 +/- 3.2 ng/ml after hGH administrations for three consecutive days in five pituitary dwarfs. The IGF-I levels were low in patients with hypothyroidism and liver cirrhosis, but were normal in patients with chronic renal failure. These data confirm previous reports and this radioimmunoassay proves useful in evaluating plasma IGF-I levels.  相似文献   

17.
目的:建立一种高灵敏度、高特异性、操作简单快捷、通量高的重组人血清白蛋白(rHSA)抗体检测方法。方法:采用桥连ELISA法,即将rHSA包被于96孔板,加入待测血样及阳性对照,用辣根过氧化物酶标记的rHSA检测,显色读取D_450nm/D_570nm值:用此方法确定临界值、方法灵敏度、精密度、血药浓度对检测方法的影响,再以免疫清除法进行确证。结果:通过桥连ELISA法确定临界值为0.0492,方法灵敏度为352ng/mL,方法板间、板内精密度均小于20%,且血药中的rHSA浓度为20μg/mL时不影响抗体的检测;经免疫清除法可将假阳性样本排除,从而提高了方法的特异性.结论:建立的方法可以准确、快速地检测出rHSA的特异性抗体。  相似文献   

18.
A sensitive method for the determination of Cloretazine (VNP40101M) and its metabolite (VNP4090CE) with an internal standard (ISTD) in human plasma was developed using high-performance liquid chromatographic separation with tandem mass spectrometric detection. Acidified plasma samples (500 microL) were prepared using solid phase extraction (SPE) columns, and 25 microL of the reconstituted sample was injected onto an Ascentis C18 HPLC column (3 microm, 5 cmx2.1 mm) with an isocratic mobile phase. Analytes were detected with an API-3000 LC-MS/MS System at unit (Q1) and low (Q3) resolution in negative multiple reaction monitoring mode: m/z 249.0 (precursor ion) to m/z 114.9 (product ion) for both Cloretazine (at 3.64 min) and VNP4090CE (at 2.91 min), and m/z 253.0 (precursor ion) to m/z 116.9 (product ion) for the ISTD. The mean recovery for Cloretazine (VNP40101M) and its metabolite (VNP4090CE) was greater than 87% with a lower limit of quantification of 1.0 ng/mL for Cloretazine (S/N=9.7, CV相似文献   

19.
Apigenin is a flavone and is being developed for treatment of cardiovascular disease. A sensitive and accurate quantitative detection method using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) for the measurement of apigenin and luteolin levels in rat plasma is described. Analytes were separated on a separation by a Luna C(18) (5 microm, 100 mm x 2.0 mm) column with acetonitrile:methanol:water (35:40:60, v/v/v) as a mobile phase. The eluted compounds were detected by tandem mass spectrometry. Good linearity (R(2)>0.9997) was observed for both analytes over the range of 2.5-5000 ng/mL in 0.1mL of rat plasma. The overall accuracy of this method was 93-105% for apigenin and 95-112% for luteolin in rat plasma. Intra-assay and inter-assay variabilities were less than 11% in plasma. The lowest quantitation limit for both apigenin and luteolin was 2.5 ng/mL in 0.1 mL of rat plasma. Practical utility of this new LC/MS/MS method was demonstrated in a pilot pharmacokinetic study in rats following intravenous administration of apigenin. Metabolism of apigenin to luteolin in vivo was established.  相似文献   

20.
Evaluation of different extraction methods for quantification of endogenous sorbitol and fructose in human red blood cells (RBCs) and matrix effects in ESI and APCI showed that protein-precipitation followed by mixed-mode solid-phase extraction was more effective extraction method and APCI more effective ionization method. Then the LC/APCI-MS/MS method was fully validated and successfully applied to analysis of clinical RBC samples. The concentrations of endogenous sorbitol and fructose were determined using calibration curves employing sorbitiol-13C6 and fructose-13C6 as surrogate analytes. The method has provided excellent intra- and inter-assay precision and accuracy with a linear range of 50.0-10,000 ng/mL (correlation coefficient >0.999) for sorbitol-13C6 and 250-50000 ng/mL (correlation coefficient >0.999) for fructose-13C6 in human RBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号