首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vegetative mycelial cells of Armillaria are expected to have diploid nuclei. Cells from a single mycelium therefore would not be expected to differ from one another for ecologically relevant quantitative traits. We isolated two sets of basidiome cell lines (from spores and stipe cells) and one set of vegetative cell lines (from an attached rhizomorph) from a single contiguous Armillaria gallica mycelium. We isolated a second set of vegetative cell lines from the soil 20 cm from the above basidiome-rhizomorph complex. In all four sets of cell lines in situ DAPI-DNA measurements showed cells are haploid and quantitative-trait analyses of cell lines grown at different water potentials revealed high levels of among-cell-line genetic variation for both growth and phenotypic plasticity. Haploidy and the existence of ecologically relevant genetic variation within vegetative individuals are unexpected and mean that a process similar to evolutionary adaptation could take place within the soma of a genetic individual. We believe this is a key to understanding how large A. gallica mycelia survive exposure to variation in ecological conditions during lives that potentially span several tree (host) generations.  相似文献   

2.
Brazee NJ  Marra RE  Wick RL 《Mycologia》2012,104(1):53-61
The population structure of Armillaria gallica, an important pathogen of Quercus spp., was investigated from mixed oak forests in central Massachusetts, encompassing a sampling area over 500 km(2). From 16 plots at four sites a total of 153 isolates (34-40 isolates per site) was analyzed with amplified fragment length polymorphisms (AFLPs). Analyses of 204 polymorphic loci detected 38 AFLP genotypes from a sample area of 4.51 hectares (ha). Genets ranged in distribution from five to 33 genets per hectare (GPH), with a mean of eight GPH and the average A. gallica genet occupying 0.13 ha. Allele frequencies produced an unbiased expected heterozygosity (H(E)) value of 0.112 (SE = 0.006) and a Nei's expected heterozygosity (H(J)) value of 0.190 (SE = 0.009), indicating low genetic diversity within the population. Analysis of molecular variation (Φ(PT) = 0.301; P < 0.001) indicates high genetic differentiation, with 70% of the molecular variation explained at the site-level within A. gallica subpopulations. However, results of the Mantel test, used to assess the isolation-by-distance hypothesis, were inconclusive in determining whether the subpopulations were truly isolated by distance. A neighbor-joining tree constructed from a genetic distance matrix grouped genotypes from the same site (subpopulation) together, but from three of four sites genotypes were randomly clustered at the plot level. The results suggest that basidiospore dispersal is an important means of new genet formation at linear distances up to 2000 m.  相似文献   

3.
In recent years, increasing numbers of studies revealed intraorganismal genetic variation, primarily in modular organisms like plants or colonial marine invertebrates. Two underlying mechanisms are distinguished: Mosaicism is caused by somatic mutation, whereas chimerism originates from allogeneic fusion. We investigated the occurrence of intracolonial genetic variation at microsatellite loci in five natural populations of the scleractinian coral Seriatopora hystrix on the Great Barrier Reef. This coral is a widely distributed, brooding species that is at present a target of intensive population genetic research on reproduction and dispersal patterns. From each of 155 S. hystrix colonies, either two or three samples were genotyped at five or six loci. Twenty-seven (~17%) genetically heterogeneous colonies were found. Statistical analyses indicated the occurrence of both mosaicism and chimerism. In most cases, intracolonial variation was found only at a single allele. Our analyses suggest that somatic mutations present a major source of genetic heterogeneity within a single colony. Moreover, we observed large, apparently stable chimeric colonies that harbored clearly distinct genotypes and contrast these findings with the patterns typically observed in laboratory-based experiments. We discuss the error that mosaicism and chimerism introduce into population genetic analyses.  相似文献   

4.
Somatic mutations are an underappreciated source of genetic variation within multi-cellular organisms. The resulting genetic mosaicism should be particularly abundant in large clones of vegetatively propagating angiosperms. Little is known on the abundance and ecological correlates of genetic mosaicism in field populations, despite its potential evolutionary significance. Because sexual reproduction restores genetic homogeneity, we predicted that in facultatively clonally reproducing organisms, the prevalence of genetic mosaicism increases with increasing clonality. This was tested among 33 coastal locations colonized by the ecologically important marine angiosperm Zostera marina, ranging from Portugal to Finland. Genetic mosaics were detectable as complex microsatellite genotypes at two hypervariable loci that revealed additional mosaic alleles, suggesting the presence of one or more divergent cell lineages within the same ramet. The proportions of non-mosaic genotypes in a population sharply decreased below a clonal richness of 0.2. Accordingly, more genetic mosaics were found at the southern and northern limit of the distribution of Z. marina in Europe where sexual reproduction is rare or absent. The genetic mosaics observed at neutral microsatellite markers suggest the possibility of within-clone variation at selectively relevant loci and supports the notion that members of clones are seldom genetically identical.  相似文献   

5.
Genetic variation in wild Asian populations and U.S. hatchery stocks of Crassostrea ariakensis was examined using polymerase chain reactions with restriction fragment length polymorphism (PCR-RFLP) analysis of both the mitochondrial COI gene and the nuclear internal transcribed spacer (ITS) 1 region and using 3 microsatellite markers. Hierarchical analysis of molecular variance and pairwise comparisons revealed significant differentiation (P < 0.05) between samples from the northern region, represented by collections from China and Japan, and 2 of 3 samples from southern China. PCR-RFLP patterns were identified that were diagnostic for the northern (N-type) and southern (S-type) groups. Microsatellite marker profiles were used to assign each oyster to one of the two northern or two southern populations. Results for more than 97% of the oysters were consistent with the PCR-RFLP patterns observed for each individual in that oysters with N-type patterns were assigned to one of the northern populations and those with S-type patterns to one of the southern populations. At one site of the Beihai (B) region in southern China a mix of individuals with either the N-type or S-type PCR-RFLP genotypes was found. No heterozygotes at the nuclear ITS-1 locus were found in the sample, possibly indicating reproductive isolation in sympatry. Microsatellite assignment test results of the B individuals were also consistent with identifications as either the N-type or S-type based on PCR-RFLP patterns. The parental population for one hatchery stock was this B sample, which initially was composed of almost equal numbers of northern and southern genetic types. After hatchery spawns, however, more than 97% of the progeny fell into the northern genetic group by PCR-RFLP and microsatellite assignment test analyses, indicating that the individuals with the southern genotype contributed little to the spawn, owing to gametic incompatibility, differential larval survival, or a difference in timing of sexual maturity. Overall, results suggested that oysters collected as C. ariakensis in this study, and likely in other studies as well, include two different sympatric species with some degree of reproductive isolation.  相似文献   

6.
Abstract.— We examined genetic variation at 21 polymorphic allozyme loci, 15 nuclear DNA loci, and mitochondrial DNA in four spawning populations of sockeye salmon ( Oncorhynchus nerka ) from Cook Inlet, Alaska, to test for differences in the patterns of divergence among different types of markers. We were specifically interested in testing the suggestion that natural selection at allozyme loci compromises the effectiveness of these markers for describing the amount and patterns of gene flow among populations. We found concordance among markers in the amount of genetic variation within and among populations, with the striking exception of one allozyme locus ( sAH ), which exhibited more than three times the amount of among-population differentiation as other loci. A consideration of reports of discordance between allozymes and other loci indicates that these differences usually result from one or two exceptional loci. We conclude that it is important to examine many loci when estimating genetic differentiation to infer historical amounts of gene flow and patterns of genetic exchange among populations. It is less important whether those loci are allozymes or nuclear DNA markers.  相似文献   

7.
Genomically identical cells have long been assumed to comprise the human brain, with post-genomic mechanisms giving rise to its enormous diversity, complexity, and disease susceptibility. However, the identification of neural cells containing somatically generated mosaic aneuploidy – loss and/or gain of chromosomes from a euploid complement – and other genomic variations including LINE1 retrotransposons and regional patterns of DNA content variation (DCV), demonstrate that the brain is genomically heterogeneous. The precise phenotypes and functions produced by genomic mosaicism are not well understood, although the effects of constitutive aberrations, as observed in Down syndrome, implicate roles for defined mosaic genomes relevant to cellular survival, differentiation potential, stem cell biology, and brain organization. Here we discuss genomic mosaicism as a feature of the normal brain as well as a possible factor in the weak or complex genetic linkages observed for many of the most common forms of neurological and psychiatric diseases.  相似文献   

8.
Soroka M 《Zoological science》2005,22(10):1137-1144
The alien Chinese mussel Anodonta woodiana was first reported in Poland in the system of heated lakes near Konin in 1993. Genetic studies with use of three molecular techniques (isoenzyme electrophoresis, PCR-RFLP and sequence analysis of a COI gene fragment) were carried out on the Polish first populations of A. woodiana. The studies have revealed low genetic variation between the populations (Nei's genetic distance for 12 loci ranged 0.000 to 0.007) as well as their considerable polymorphism. Each population averaged 2.28 alleles per locus, 2.72 alleles per polymorphic locus, and 75% polymorphic loci. Restriction analysis of the COI gene fragment have not revealed variability between the analysed specimens, including males and females. Restriction enzymes, ScrFI, Csp6I, and EcoRI used in the COI gene fragment PCR-RFLP generate distinct restriction patterns, which can be molecular markers for A. woodiana. The sequence obtained for COI fragment was the same in the examined female and male specimens and represents F mitotype (DNA was isolated from somatic tissues). The divergence between A. woodiana F and M mitotypes is high (34%), however it remains within the range of the general character of the DUI (doubly uniparental inheritance) phenomenon in freshwater bivalves (Unionidae).  相似文献   

9.
Natural hybridization accompanied by a shift in niche preference by hybrid genotypes can lead to hybrid speciation. Natural selection may cause the fixation of advantageous alleles in the ecologically diverged hybrids, and the loci experiencing selection should exhibit a reduction in allelic diversity relative to neutral loci. Here, we analyzed patterns of genetic diversity at 59 microsatellite loci associated with expressed sequence tags (ESTs) in a homoploid hybrid sunflower species, Helianthus anomalus. We used two indices, ln RV and ln RH, to compare variation and heterozygosity (respectively) at each locus between the hybrid species and its two parental species, H. annuus and H. petiolaris. Mean values of ln RV and ln RH were significantly lower than zero, which implies that H. anomalus experienced a population bottleneck during its recent evolutionary history. After correcting for the apparent bottleneck, we found six loci with a significant reduction in variation or with heterozygosity in the hybrid species, compared to one or both of the parental species. These loci should be viewed as a ranked list of candidate loci, pending further sequencing and functional analyses. Sequence data were generated for two of the candidate loci, but population genetics tests failed to detect deviations from neutral evolution at either locus. Nonetheless, a greater than eight-fold excess of nonsynonymous substitutions was found near a putative N-myristoylation motif at the second locus (HT998), and likelihood-based models indicated that the protein has been under selection in H. anomalus in the past and, perhaps, in one or both parental species. Finally, our data suggest that selective sweeps may have united populations of H. anomalus isolated by a mountain range, indicating that even low gene-flow species may be held together by the spread of advantageous alleles.  相似文献   

10.
We isolated six polymorphic microsatellite loci in the migratory freshwater fish Prochilodus costatus, which is an endemic species and important fisheries resource from São Francisco river basin, Brazil. We have evaluated the applicability of these loci to study genetic variation in wild population of this fish. Thus, based on the genotypes of 32–48 individuals, we detected two to 21 alleles per locus, observed and expected heterozygosities ranging from 0.19 to 0.89 and from 0.17 to 0.92, respectively. These polymorphic markers should provide efficient tools to study population genetic structure of this fish.  相似文献   

11.
12.
Investigating patterns of genetic variation in hybridizing species provides an opportunity to understand the impact of natural selection on intraspecific genetic variability and interspecific gene exchange. The Atlantic eels Anguilla rostrata and A. anguilla each occupy a large heterogeneous habitat upon which natural selection could differentially shape genetic variation. They also produce viable hybrids only found in Iceland. However, the possible footprint of natural selection on patterns of genetic variation within species and introgressive hybridization in Icelandic eels has never been assessed. We revisited amplified fragment length polymorphism data collected previously using population genomics and admixture analyses to test if (i) genetic variation could be influenced by non-neutral mechanisms at both the intra- and interspecific levels, and if (ii) selection could shape the spatio-temporal distribution of Icelandic hybrids. We first found candidate loci for directional selection within both species. Spatial distributions of allelic frequencies displayed by some of these loci were possibly related with the geographical patterns of life-history traits in A. rostrata , and could have been shaped by natural selection associated with an environmental gradient along European coasts in A. anguilla . Second, we identified outlier loci at the interspecific level. Non-neutral introgression was strongly suggested for some of these loci. We detected a locus at which typical A. rostrata allele hardly crossed the species genetic barrier, whereas three other loci showed accelerated patterns of introgression into A. anguilla in Iceland. Moreover, the level of introgression at these three loci increased from the glass eel to the yellow eel stage, supporting the hypothesis that differential survival of admixed genotypes partly explains the spatio-temporal pattern of hybrid abundance previously documented in Iceland.  相似文献   

13.
B. K. Epperson 《Genetics》1995,140(1):365-375
Extensive Monte Carlo simulations are conducted of spatial distributions of two-locus genotypes in large, continuous populations under isolation by distance models. The results show that substantial patches of double homozygotes are present in the spatial structures, even when loci are unlinked. The stochastic spread of identical two-locus genotypes largely outpowers the tendency for recombination to decouple patterns for separate loci. A spatial patch is a large area containing mostly one double homozygous genotype in a highly contiguous constellation. This patch structure is reflected in high positive spatial autocorrelations and large excesses of pairs, or joins, of identical double homozygotes at short-to-intermediate distances of spatial separation. Although spatial patches of double homozygotes are the dominant spatial feature, and the major contributors to overall high levels of autocorrelations among two-locus genotypes, other substantial features include areas of concentrations of identical genotypes heterozygous at only one locus. One implication of the patch structure is the presence of high levels of linkage disequilibrium, caused by isolation by distance even for unlinked loci, at some spatial scales; yet the disequilibrium in the large total populations is near 0. Thus linkage disequilibrium produced by isolation by distance is highly dependent on spatial scale. Another implication is that high degrees of spatial structuring and autocorrelations are produced for genetic variation controlling quantitative traits, at least when the number of loci is relatively small, under a wide range of situations, even if the trait is selectively neutral. The significance of the results to field studies is also examined.  相似文献   

14.
Mosaicism is defined as the coexistence of cells with different genetic composition within an individual, caused by postzygotic somatic mutation. Although somatic mosaicism for chromosomal abnormalities is a well-established cause of developmental and somatic disorders and has also been detected in different tissues, its frequency and extent in the adult normal population are still unknown. We provide here a genome-wide survey of mosaic genomic variation obtained by analyzing Illumina 1M SNP array data from blood or buccal DNA samples of 1991 adult individuals from the Spanish Bladder Cancer/EPICURO genome-wide association study. We found mosaic abnormalities in autosomes in 1.7% of samples, including 23 segmental uniparental disomies, 8 complete trisomies, and 11 large (1.5–37 Mb) copy-number variants. Alterations were observed across the different autosomes with recurrent events in chromosomes 9 and 20. No case-control differences were found in the frequency of events or the percentage of cells affected, thus indicating that most rearrangements found are not central to the development of bladder cancer. However, five out of six events tested were detected in both blood and bladder tissue from the same individual, indicating an early developmental origin. The high cellular frequency of the anomalies detected and their presence in normal adult individuals suggest that this type of mosaicism is a widespread phenomenon in the human genome. Somatic mosaicism should be considered in the expanding repertoire of inter- and intraindividual genetic variation, some of which may cause somatic human diseases but also contribute to modifying inherited disorders and/or late-onset multifactorial traits.  相似文献   

15.
? Premise of the study: Microsatellite primers were developed for Paeonia delavayi and P. ludlowii (Paeoniaceae) to study their population genetics and phytogeography. ? Methods and Results: Nine polymorphic nuclear microsatellite loci were isolated from an enriched library of P. delavayi and primers were designed. The number of alleles per locus ranged from two to 16; the observed and expected heterozygosities ranged from 0.014 to 0.687 and 0.042 to 0.875, respectively. Six polymorphic chloroplast microsatellite loci were identified in P. delavayi and primers were provided. The number of alleles per locus ranged from two to six and the polymorphic information content ranged from 0.08 to 0.716. Both nuclear and chloroplast primers were successfully applicable to P. ludlowii. ? Conclusions: The markers developed here will facilitate analyses of genetic diversity, population genetic structure, phytogeographical patterns, and conservation for P. delavayi and P. ludlowii.  相似文献   

16.
Hybrid zones provide natural experiments where new combinations of genotypes and phenotypes are produced. Studying the reshuffling of genotypes and remodeling of phenotypes in these zones is of particular interest to document the building of reproductive isolation and the possible emergence of transgressive phenotypes that can be a source of evolutionary novelties. Here, we specifically investigate the morphological variation patterns associated with introgressive hybridization between two species of sole, Solea senegalensis and Solea aegyptiaca. The relationship between genetic composition at nuclear loci and individual body shape variation was studied in four populations sampled across the hybrid zone located in northern Tunisia. A strong correlation between genetic and phenotypic variation was observed among all individuals but not within populations, including the two most admixed ones. Morphological convergence between parental species was observed close to the contact zone. Nevertheless, the samples taken closest to the hybrid zone also displayed deviant segregation of genotypes and phenotypes, as well as transgressive phenotypes. In these samples, deviant body shape variation could be partly attributed to a reduced condition index, and the distorted genetic composition was most likely due to missing allelic combinations. These results were interpreted as an indication of hybrid breakdown, which likely contributes to postmating reproductive isolation between the two species.  相似文献   

17.
The loach Misgurnus anguillicaudatus comprises diploid, triploid and diploid-triploid mosaic individuals in a wild population of the Hokkaido island, Japan. Previous studies revealed the presence of a cryptic clonal lineage among diploid loaches, which is maintained by uniparental reproduction of genetically identical diploid eggs. In the present study, we analyzed distribution and genetic status of diploid and triploid cells in infrequent mosaic males. Flow cytometry, microsatellite genotyping and DNA fingerprinting verified that mosaic males consisted of diploid cells with genotypes identical to the natural clone and triploid cells with diploid genomes of the clonal lineage plus haploid genome from sperm nucleus of the father. Thus, the occurrence of diploid-triploid mosaicism might be caused by accidental fertilization of a diploid blastomere nucleus with haploid sperm after the initiation of clonal development of unreduced eggs. Such mosaic males produced fertile sperm with diploid DNA content. The experimental cross between normal diploid female and diploid-triploid mosaic male gave rise to the appearance of triploid progeny which exhibited two microsatellite alleles identical to the clonal genotype and one allele derived from the normal female. In DNA fingerprinting, such triploid progeny gave not only all the DNA fragments from the clone, but also other fragments from the normal female. Induced androgenesis using UV irradiated eggs and sperm of the mosaic male gave rise to the occurrence of diploid individuals with paternally derived microsatellite genotypes and DNA fingerprints, absolutely identical to the natural clonal lineage. These results conclude that the diploid-triploid mosaic male produced unreduced diploid sperm with genetically identical genotypes. The spermatogenesis in the clonal diploid cells under the mosaic condition suggests that triploid male somatic cells might transform genetically all-female germ cells to differentiate into functionally male gametes. The discovery of the mosaic male producing unreduced sperm suggests the theoretical occurrence of triploids and other polyploids by the syngamy of such paternally derived diploid gametes.  相似文献   

18.

Background

Molecular genetic approaches have much to offer population biology. Despite recent advances, convenient techniques to develop and screen highly-resolving markers can be limiting for some applications and taxa. We describe an improved PCR-based, cloning-free, nuclear marker development procedure, in which single-stranded conformation polymorphism (SSCP) plays a central role. Sequence-variable alleles at putative nuclear loci are simultaneously identified and isolated from diploid tissues. Based on a multiple allele alignment, locus-specific primers are designed in conserved regions, minimizing 'null' alleles. Using two undescribed endemic Australian Collembola as exemplars, we outline a comprehensive approach to generating and validating suites of codominant, sequence-yielding nuclear loci for previously unstudied invertebrates.

Results

Six markers per species were developed without any baseline genetic information. After evaluating the characteristics of each new locus via SSCP pre-screening, population samples were genotyped on the basis of either DNA sequence, restriction site, or insertion/deletion variation, depending on which assay was deemed most appropriate. Polymorphism was generally high (mean of nine alleles per locus), and the markers were capable of resolving population structuring over very fine spatial scales (<100 km). SSCP coupled with targeted DNA sequencing was used to obtain genotypic, genic and genealogical information from six loci (three per species). Phylogeographic analysis identified introns as being most informative.

Conclusion

The comprehensive approach presented here feasibly overcomes technical hurdles of (i) developing suitably polymorphic nuclear loci for non-model organisms, (ii) physically isolating nuclear allele haplotypes from diploid tissues without cloning, and (iii) genotyping population samples on the basis of nuclear DNA sequence variation.  相似文献   

19.
Garrigue  Claire 《Hydrobiologia》1998,378(1-3):1-10
Starch-gel electrophoretic techniques were applied to the investigation of molecular genetic variation in populations of the rough periwinkle Littorina saxatilis. The investigation comprised two phases: a) technique development to resolve as many as possible of the allozyme loci reported in the literature as having been screened in the genus Littorina and in Melarhaphe neritoides; b) the use of these loci to assess levels of genetic variation in and patterns of genetic differentiation among populations of L. saxatilis from a relatively isolated group of populations from Galway Bay, Ireland. More than 43 allozyme loci (of which four were screened for the first time here in this species), coding for 37 enzymes, were investigated and thirteen of these loci (including two loci screened for the first time here) were found to be variable and reliably scorable. Samples from five pairs of transects were collected from Inismór, Aran Islands, from sites with known exposure levels; one transect within each pair was collected from an exposed site and the other from a nearby, but relatively sheltered site. UPGMA for eleven loci, (ARK and PGDH were excluded from cluster and FST analysis as they were unscorable in a few samples), showed that the samples cluster mostly by pair, reflecting their geographic origin and is indicative of little gene flow between populations. Levels of population differentiation were high among samples from the top of the shore, but unusually so at AAT-1 which showed nearly three times the mean FST value for the eleven loci. There was also a significant regression of frequency of AAT-1100 against level of exposure. In addition, among midshore samples, there was a consistently higher frequency of AAT-1100 in sheltered habitats. These results support the findings of others, indicating that this locus may be subject to natural selection.  相似文献   

20.
A set of 94 peach cultivars including Spanish native peach and foreign commercial cultivars were analyzed using 15 SSR markers, selected for their high level of polymorphism. The number of alleles obtained varied from two to 11 with an average of 6.73 giving 185 different genotypes. All the cultivars showed a unique genetic profile, each one using different genotypic combination of all loci. BPPCT001 was the most informative locus showing also the highest discrimination power. Only six loci allowed the unambiguous separation of all the Spanish native cultivars studied, and the genotypic combination of only eight loci permitted the total differentiation of the 94 peach cultivars analyzed. The six selected loci (BPPCT001, BPPCT006, BPPCT008, PS9f8, UDP98-022, and UDP98-412) seem to be very useful for future Spanish peach identification works, and they will help to establish a molecular data base for native peach cultivars. UPGMA analysis was performed from the genetic distance matrix, and allowed the arrangement of all genotypes according to their genetic diversity. The genetic diversity among cultivars, observed in this work, led to their separation according to their regional origin, their morphological characteristics, and especially according to their fruit traits. Analysis of molecular variance was performed for seven populations from different regions of Spain and USA to examine the distribution of genetic variation of the studied accessions, showing that the major variation occurred within populations in each geographic site. The results reveal the existence of two diversity regions in Spain for peach germplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号