首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Dorsal and ventral roots of the frog's spinal cord were filled with cobaltous chloride through axonal transport. Following incubation in different buffers saturated with H2S, the resulting CoS was intensified with two kinds of physical developers, the one containing gum arabic, the other tungsto-silicic acid as protective colloid. Optimum circumstances for CoS formation were found at high pH values in model experiments. NaOH and CuSO4 pretreatments of tissues enhanced the intensification power of the physical developer containing tungsto-silicic acid. The structural integrity of tissues was best preserved when phosphate buffers saturated with H2S were employed to precipitate cobalt in histological specimens. Of the two developers the one containing gum arabic gave a finer staining of neural elements, but its intensification effect was somewhat capricious. Histological results suggested that within the range of cobalt transport (10-20 mm), neural elements filled with cobalt were quantitatively and selectively shown. At the present state of experiments neural elements with a process to the periphery are only accessible to staining with this technique.  相似文献   

2.
1. Small doses (1-10mug) of colchicine injected into the ventral horn of the spinal cord of the chicken caused paralysis in the legs. 2. Colchicine had no effect on the incorporation of leucine into proteins of the spinal cord but markedly decreased the total amount of protein flowing into the axons of the sciatic nerve. 3. This axonal flow of protein proceeded at two rates: a high rate (300mm/day) and a low rate (2mm/day). Although both groups of proteins were affected, the slow transport of protein was more profoundly blocked by colchicine. 4. The results suggest that axonal flow is dependent on the neurotubular system in the axon.  相似文献   

3.
The anterograde axonal transport of choline-phosphoglycerides was studied in sciatic nerve motoneurons of adult (3-month-old) and aged (24-month-old) rats. After the spinal cord injection of [2-3H]glycerol, choline-phosphoglycerides; the major phospholipid class was transported along the nerve. The axonal transport rate was determined by plotting the distance covered by the front of transported radioactivity as a function of the time employed. In aged animals the rate of the choline-phosphoglyceride anterograde axonal transport was about 68% lower than that of adults; furthermore, the rate slowed down along the nerve in the proximal-distal direction. This alterated axonal transport mechanism might contribute to the degenerative processes observed in distal regions of peripheral nerve fibers of aged animals.  相似文献   

4.
Axonal transport of enzymatically active botulinum toxin A (BTX-A) from periphery to the CNS has been described in facial and trigeminal nerve, leading to cleavage of synaptosomal-associated protein 25 (SNAP-25) in central nuclei. Aim of present study was to examine the existence of axonal transport of peripherally applied BTX-A to spinal cord via sciatic nerve. We employed BTX-A-cleaved SNAP-25 immunohistochemistry of lumbar spinal cord after intramuscular and subcutaneous hind limb injections, and intraneural BTX-A sciatic nerve injections. Truncated SNAP-25 in ipsilateral spinal cord ventral horns and dorsal horns appeared after single peripheral BTX-A administrations, even at low intramuscular dose applied (5 U/kg). Cleaved SNAP-25 appearance in the spinal cord after BTX-A injection into the sciatic nerve was prevented by proximal intrasciatic injection of colchicine (5 mM, 2 μl). Cleaved SNAP-25 in ventral horn, using choline-acetyltransferase (ChAT) double labeling, was localized within cholinergic neurons. These results extend the recent findings on BTX-A retrograde axonal transport in facial and trigeminal nerve. Appearance of truncated SNAP-25 in spinal cord following low-dose peripheral BTX-A suggest that the axonal transport of BTX-A occurs commonly following peripheral application.  相似文献   

5.
The possibility of the formation of spinal cord functional asymmetry by the blockade of axonal transport in corticolumbar projections with colchicine was investigated. To identify the blockade of axonal transport, the method of retrograde transport of horseradish peroxidase was used. The blockade of axonal transport led to the formation of the asymmetric functional status of the spinal cord, manifesting in postural asymmetry of the hind limbs and characteristic changes in the pattern of bioelectrical activity of the flexor muscles. An endogenous factor inducing postural asymmetry in intact recipients was detected in the cerebrospinal fluid of colchicine treated animals. Based on the experimental data the conclusion is drawn that interruption of normal axonal transport attests to the destruction of central neurons.  相似文献   

6.
The main purpose of the present study was to examine the time and dose-dependent course of demyelination in the rat radiation myelopathy model in the first 180 days after irradiation of the spinal cord. An irradiated cervical spinal cord rat model (C2-T2 segment) was generated using a 60Co irradiator to deliver 50 Gy and 100 Gy, respectively. The behavioral dysfunction was observed by the forelimb paralysis scoring system. The histological damage in the irradiated spinal cord was examined by hematoxylin/eosin staining, luxol fast blue staining, immunohistochemical analysis, methylene blue/Azure II staining, and uranyl/lead salts staining. The gene expression of oligodendrocyte-related markers were also determined by quantitative real-time PCR. The complete loss of forelimb motor function in all animals was observed at 180 days 50 Gy post-irradiation and at 120 days 100 Gy post-irradiation. We demonstrated that a 50 and 100-Gy single-dose irradiation of the C2-T2 spinal cord segment resulted in diffuse axonal loss and elicited secondary demyelination damage in the spinal cord. We further observed that 100-Gy irradiation reduced the gene expression of myelin oligodendrocyte glycoprotein in irradiated spinal cord. Taken together, our data not only define diffuse axonal loss as the main histological damage but also provide the first evidence that demyelination occurred as the secondary damage in irradiated spinal cord.  相似文献   

7.
Abstract: Calcium is required to sustain fast axonal transport in sensory neurons of frog and cat. We studied the Ca2+ dependence of fast axonal transport in the motoneurons of the lower spinal cord from frog. The accumulation of acetylcholinesterase at a crush on the ventral roots was used to follow axonal transport. Two types of experiments were performed: modification of the medium bathing the ventral roots, alone, and modification of the medium bathing the spinal cord and ventral roots. Incubation (17-18 h) of the ventral roots in Ca2+-free medium markedly inhibited acetylcholinesterase transport, a finding that demonstrates a Ca2+ requirement for fast axonal transport in motoneurons; when 4 m M MgCl2 was added to the Ca2+-free medium, transport was also greatly reduced. During incubation of the ventral roots in normal medium supplemented with 0.18 m M CoCl2 transport proceeded normally; but when the Co2+ concentration was raised to 1.8 m M , transport was diminished as drastically as in the Ca2+-free medium. Incubation of the spinal cord and ventral roots in medium containing 0.18 m M CoCl2 did not reduce the accumulation of acetylcholinesterase at the crush. Similarly, accumulation of acetylcholinesterase at a crush on the dorsal root was not significantly reduced by exposure of the dorsal root ganglion and root to 0.18 m M Co2+. Exposure of sensory cell bodies to 0.18 m M Co2+ thus produces differential effects on transport of acetylcholinesterase and on transport of newly synthesized radiolabeled protein.  相似文献   

8.
Summary The dynamics of horseradish peroxidase (HRP) transport in primary sensory neurons were studied in rats by demonstration of the reaction product in spinal nerves, spinal ganglia, dorsal roots and in the spinal cord at different survival times after application of the enzyme to the transected sciatic nerve and to the spinal cord. Using tetramethylbenzidine as the chromogen according to Mesulam (1978), transganglionic transport of HRP was shown in both the disto-proximal direction after peripheral application, and proximo-distal direction after central application. Significant differences in staining intensity between the central and peripheral processes of primary sensory neurons were found after all survival times used in this study. After peripheral application the number of labeled axons and the staining intensity were higher in spinal nerves than in dorsal roots; an inverse situation occurred after central application. These differences as well as the time sequences in staining of different parts of primary sensory neurons suggest that HRP applied to a peripheral nerve and to the spinal cord, respectively, enters the perikarya of spinal ganglion cells in any case before continuing its movement in a cellulifugal direction. Lysosomal degradation of the major portion of the applied HRP is supposed. However, in the post-perikaryal portion of a considerable number of neurons HRP-transport still occurs to a varying extent, thus resulting in labeling of nerve endings. In some neurons a post-perikaryal transport could not be detected light microscopically. The transport rates differ: the calculated transport rate of disto-proximal, cellulipetal movement in the fastest transporting neurons was 7.5 mm/h, that of the disto-proximal cellulifugal movement 2.5 to 3 mm/h.This work was partly supported by the Hartmann Müller-Stiftung I want to thank Miss Regula Eichholzer for the technical assistance  相似文献   

9.
14C-glycin was microinjected into the ventral horns of the spinal cord or spinal ganglions. The rate of fast and slow axoplasmic transport of proteins in the axons of motor and sensory neurons was studied by liquid scintillation. Motor fibers of the sciatic nerve manifested a marked decrease (P less than 0.05) in the rate of slow axoplasmatic transport of the labeled protein from 5.25 +/- 0,31 in 2-week-old rats to 3.45 +/- +/- 0.23 mm/day in 4-week-old animals and a significant increase in the rate of fast axoplasmic transport (P less than 0.05) from 99 +/- 13.2 (2-week-old rats) up to 198 +/- 18.9 mm/day (in 4-week-old rats). The two-week-old rats had higher rates (4.5 +/- 0.3 mm/day) of slow axoplasmic transport of the labeled protein in the central and peripheral axons of sensory neurocytes and lower rates of fast axoplasmic transport (126 +/- 14.7 mm/day) as compared with 4-week-old animals (3.75--4.1 +/- 0.25 -- slow transport; 144 +/- 23.34 mm/day -- fast transport). However, the differences described are not significant.  相似文献   

10.
Axonal stretching is linked to rapid rates of axonal elongation. Yet the impact of stretching on elongation and slow axonal transport is unclear. Here, we develop a mathematical model of slow axonal transport that incorporates the rate of axonal elongation, protein half-life, protein density, adhesion strength, and axonal viscosity to quantify the effects of axonal stretching. We find that under conditions where the axon (or nerve) is free of a substrate and lengthens at rapid rates (>4 mm day−1), stretching can account for almost 50% of total anterograde axonal transport. These results suggest that it is possible to accelerate elongation and transport simultaneously by increasing either the axon's susceptibility to stretching or the forces that induce stretching. To our knowledge, this work is the first to incorporate the effects of stretching in a model of slow axonal transport. It has relevance to our understanding of neurite outgrowth during development and peripheral nerve regeneration after trauma, and hence to the development of treatments for spinal cord injury.  相似文献   

11.
Following intracerebral inoculation, the DA strain of Theiler's virus sequentially infects neurons in the gray matter and glial cells in the white matter of the spinal cord. It persists in the latter throughout the life of the animal. Several observations suggest that the virus spreads from the gray to the white matter by axonal transport. In contrast, the neurovirulent GDVII strain causes a fatal encephalitis with lytic infection of neurons. It does not infect the white matter of the spinal cord efficiently and does not persist in survivors. The inability of this virus to infect the white matter could be due to a defect in axonal transport. Using footpad inoculations, we showed that the GDVII strain is, in fact, transported in axons. Transport was prevented by sectioning the sciatic nerve. The kinetics of transport and experiments using colchicine suggested that the virus uses microtubule-associated fast axonal transport. Our results show that a cardiovirus can spread by fast axonal transport and suggest that the inability of the GDVII strain to infect the white matter is not due to a defect in axonal transport.  相似文献   

12.
Because the integrity of an axon depends on the supply of proteins synthesized in the cell body, we examined the effect of axotomy on the transport of structural proteins in rat motor axons, and the effect of altered transport on the rate of outgrowth after a subsequent testing axotomy. To examine the axonal transport of structural proteins, we labeled newly synthesized proteins with 35S-methionine 7 days after a "conditioning" lesion of the sciatic nerve, and removed the nerve 7-21 days later for SDS-PAGE. Tubulin, actin, calmodulin, and the 68-kD light neurofilament protein (NF-L) were identified by fluorography and removed for liquid scintillation counting. The fastest moving structural proteins were carried by slow component b (SCb) of axonal transport, which advanced 20% faster in conditioned axons: 4.2 versus 3.5 mm/day (p less than 0.01). NF-L was not accelerated, indicating that the motor for subcomponent a (SCa) of slow axonal transport was unaffected by axotomy. To measure outgrowth distances, the testing lesions was made 7 days after the conditioning lesion, and growth cones were located by the fast transport method 3 or 9 days later. The regression analysis of outgrowth distance on time showed that sprouts elongated 25% faster in conditioned axons: 4.0 versus 3.2 mm/day (p less than 0.001). These accelerated sprouts were formed too far from the spinal cord to contain SCb proteins that were synthesized after axotomy. Because the rate of outgrowth correlated closely with the rate of SCb in outgrowing sprouts (McQuarrie and Jacob, J. Comp. Neurol. 305:139-147, 1991), we conclude that SCb is accelerated throughout the length of the axon by 7 days after axotomy.  相似文献   

13.
—The half-life of tryptophan 5-hydroxylase (EC 1.14.3) in rats was estimated from the return of enzyme activity after administration of p-chlorophenylalanine and from the decline of enzyme activity in spinal cord after transection or an intraspinal injection of colchicine. The half-life was 2–3 days. Axonal transport of enzyme, estimated from the reappearance of activity in consecutive portions of spinal cord after treatment with p-chlorophenylalanine, was of the order of 5–7 mm/day. This rate is characteristic of 'slow’axonal flow. Our results suggest that changes in the synthesis of new enzyme are probably not responsible for acute changes in the turnover of serotonin.  相似文献   

14.
Inhalation of particulate cobalt has been known to induce interstitial lung disease. There is growing evidence that apoptosis plays a crucial role in physiological and pathological settings and that the ubiquitin-proteasome system is involved in the regulation of apoptosis. Cadmium, the same transitional heavy metal as cobalt, has been reported to accumulate ubiquitinated proteins in neuronal cells. On the basis of these findings, we hypothesized that cobalt would induce apoptosis in the lung by disturbance of the ubiquitin-proteasome pathway. To evaluate this, we exposed U-937 cells and human alveolar macrophages (AMs) to cobalt chloride (CoCl(2)) and examined their apoptosis by DNA fragmentation assay, 4',6-diamidino-2'-phenylindol dihydrochloride staining, and Western blot analysis. CoCl(2) induced apoptosis and accumulated ubiquitinated proteins. Exposure to CoCl(2) inhibited proteasome activity in U-937 cells. Cobalt-induced apoptosis was mediated via mitochondrial pathway because CoCl(2) released cytochrome c from mitochondria. These results suggest that cobalt-induced apoptosis of AMs may be one of the mechanisms for cobalt-induced lung injury and that the accumulation of ubiquitinated proteins might be involved in this apoptotic process.  相似文献   

15.
Myelin damage can lead to the loss of axonal conduction and paralysis in multiple sclerosis and spinal cord injury. Here, we show that acrolein, a lipid peroxidation product, can cause significant myelin damage in isolated guinea pig spinal cord segments. Acrolein-mediated myelin damage is particularly conspicuous in the paranodal region in both a calcium dependent (nodal lengthening) and a calcium-independent manner (paranodal myelin splitting). In addition, paranodal protein complexes can dissociate with acrolein incubation. Degraded myelin basic protein is also detected at the paranodal region. Acrolein-induced exposure and redistribution of paranodal potassium channels and the resulting axonal conduction failure can be partially reversed by 4-AP, a potassium channel blocker. From this data, it is clear that acrolein is capable of inflicting myelin damage as well as axonal degeneration, and may represent an important factor in the pathogenesis in multiple sclerosis and spinal cord injury.  相似文献   

16.
To determine whether axonal transport plays a role in the establishment of long-lasting changes in synaptic transmission, the effects of colchicine on transport and on synaptic modifications induced by hyperactivity were studied in the nerve cord of the cockroach Blatta orientalis. Application of a lead weight on the insect's dorsum, and the consequent exaggerated use of antigravity reflexes, facilitated synaptic transmission along a particular nervous pathway in the metathoracic ganglion. Application of colchicine in the prothoracic ganglion reversibly blocked such synaptic facilitation and temporarily interfered with the transport of proteins along the cord. Five components of axonal transport, moving at 2, 10, 25, 75, and 150 mm/day, were altered by colchicine treatment with a temporal course that coincided with the reversible inhibition of synaptic facilitation. These results were brought about by colchicine acting directly on axonal transport at the level of the prothoracic ganglion, rather than on synaptic transmission measured at the metathoracic ganglion. The temporal correlation observed between the effects of colchicine on axonal transport and on synaptic facilitation strongly suggest that the transport process is essential for long-lasting synaptic modifications to take place.  相似文献   

17.
To clarify the role of the neurofilament (NF) medium (NF-M) and heavy (NF-H) subunits, we generated mice with targeted disruption of both NF-M and NF-H genes. The absence of the NF-M subunit resulted in a two- to threefold reduction in the caliber of large myelinated axons, whereas the lack of NF-H subunits had little effect on the radial growth of motor axons. In NF-M-/- mice, the velocity of axonal transport of NF light (NF-L) and NF-H proteins was increased by about two-fold, whereas the steady-state levels of assembled NF-L were reduced. Although the NF-M or NF-H subunits are each dispensable for the formation of intermediate filaments, the absence of both subunits in double NF-M; NF-H knockout mice led to a scarcity of intermediate filament structures in axons and to a marked approximately twofold increase in the number of microtubules. Protein analysis indicated that the levels of NF-L and alpha-internexin proteins were reduced dramatically throughout the nervous system. Immunohistochemistry of spinal cord from the NF-M-/-;NF-H-/- mice revealed enhanced NF-L staining in the perikaryon of motor neurons but a weak NF-L staining in axons. In addition, axonal transport studies carried out by the injection of [35S]methionine into spinal cord revealed after 30 days very low levels of newly synthesized NF-L proteins in the sciatic nerve of NF-M-/-;NF-H-/- mice. The combined results demonstrate a requirement of the high-molecular-weight subunits for the assembly of type IV intermediate filament proteins and for the efficient translocation of NF-L proteins into the axonal compartment.  相似文献   

18.
Because the integrity of an axon depends on the supply of proteins synthesized in the cell body, we examined the effect of axotomy on the transport of structural proteins in rat motor axons, and the effect of altered transport on the rate of outgrowth after a subsequent testing axotomy. To examine the axonal transport of structural proteins, we labeled newly synthesized proteins with 35 S-methiomine 7 days after a “conditioning” lesion of the sciatic nerve, and removed the nerve 7–21 days later for SDS-PAGE. Tubulin, actin, calmodulin, and the 68-kD light neurofilament protein (NF-L) were identified by fluorography and removed for liquid scintillation counting. The fastest moving structural proteins were carried by slow component b (SCb) of axonal transport, which advanced 20% faster in conditioned axons: 4.2 versus 3.5 mm/day (p < 0.01). NF-L was not accelerated, indicating that the motor for subcomponent a (SCa) of slow axonal transport was unaffected by axotomy. To measure outgrowth distances, the testing lesion was made 7 days after the conditioning lesion, and growth cones were located by the fast transport method 3 or 9 days later. The regression analysis of outgrowth distance on time showed that sprouts elongated 25% faster in conditioned axons: 4.0 versus 3.2 mm/day (p < 0.001). These accelerated sprouts were formed too far from the spinal cord to contain SCb proteins that were synthesized after axotomy. Because the rate of outgrowth correlates closely with the rate of SCb in outgrowing sprouts (McQuarrie and Jacob, J. Comp. Neurol. 305:139–147, 1991), we conclude that SCb is accelerated throughout the length of the axon by 7 days after axotomy.  相似文献   

19.
Two-photon (2P) microscopy is utilized to reveal cellular dynamics and interactions deep within living, intact tissues. Here, we present a method for live-cell imaging in the murine spinal cord. This technique is uniquely suited to analyze neural precursor cell (NPC) dynamics following transplantation into spinal cords undergoing neuroinflammatory demyelinating disorders. NPCs migrate to sites of axonal damage, proliferate, differentiate into oligodendrocytes, and participate in direct remyelination. NPCs are thereby a promising therapeutic treatment to ameliorate chronic demyelinating diseases. Because transplanted NPCs migrate to the damaged areas on the ventral side of the spinal cord, traditional intravital 2P imaging is impossible, and only information on static interactions was previously available using histochemical staining approaches. Although this method was generated to image transplanted NPCs in the ventral spinal cord, it can be applied to numerous studies of transplanted and endogenous cells throughout the entire spinal cord. In this article, we demonstrate the preparation and imaging of a spinal cord with enhanced yellow fluorescent protein-expressing axons and enhanced green fluorescent protein-expressing transplanted NPCs.  相似文献   

20.
《IRBM》2008,29(4):255-260
Magnetic resonance diffusion tensor imaging of the spinal cord is challenging because of the cord's thin structure and the presence of physiological and susceptibility artifacts. To circumvent these issues, we developed a methodology for imaging the thoraco-lumbar spinal cord of cats at 3 T using single-shot spin-echo echo planar imaging. The presented method could potentially be applied to humans since it was developed on a clinical scanner with a standard spine coil. Results provide (1) suggestions for optimal slice orientation and phase encoding direction; (2) an assessment of the benefits of parallel imaging to reduce geometric distortions; (3) the feasibility of acquiring quality diffusion weighted data in 13 min at a resolution of 1.1 mm3 and (4) the determination of axonal disruption, in two cats with complete spinal cord transection, using tractography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号