首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The oviposition deterrent effect of water extract of Spodoptera littoralis and Agrotis ipsilon larval frass on Phthorimaea operculella adult females was studied using two types of larval food “Natural host and Semi-artificial diet” under laboratory and storage simulation (semi-field) conditions. Extracted frass of fed larvae on semi-artificial diet showed complete oviposition deterrent effect at treatments with 4th, 5th and 6th instars of S. littoralis, also at treatments with 1st–3rd and 6th instars of A. ipsilon, while the same effect was observed when the larvae fed on castor oil leaves as a natural host only at treatment with frass extract of A. ipsilon 6th instar larvae. Presence of low amounts of phenols and flavonoids in water extract of A. ipsilon larval frass resulted in relatively more effect as oviposition deterrent to fertile adult females on treated oviposition sites, while the opposite effect was obtained in S. littoralis larval frass experiments. At semi-field experiments, the percentage reduction of laid eggs reached 100% after two?days at treatments with frass extracts of 4th and 5th S. littoralis larval instars and A. ipsilon 6th instar larvae fed on semi-artificial diet and/or castor oil leaves. Percentage reduction of laid eggs for untreated sacks reached 93.24 and 48.95% after 2 and 30?days, respectively, when placed between treated sacks, in comparison with the mean number of laid eggs for isolated control.  相似文献   

2.
The agricultural wastes adversely affect the environment; however, they are rich in polyphenols; therefore, this study aimed to employ polyphenol-enriched waste extracts for silver nanoparticles synthesis, and study the larvicidal activity of silver nanoparticles fabricated by pomegranate and watermelon peels extracts (PPAgNPs and WPAgNPs) against all larval instars of Spodoptera littoralis. The polyphenol profile of pomegranate and watermelon peel extracts (PP and WP) and silver nanoparticles was detected by HPLC. The antioxidant activity was estimated by DPPH, and FARP assays and the antimicrobial activity was evaluated by disc assay. The Larvicidal activity of AgNPs against Egyptian leaf worm was performed by dipping technique. The obtained AgNPs were spherical with size ranged 15–85 nm and capped with proteins and polyphenols. The phenolic compounds in silver nanoparticles increased about extracts; therefore, they have the best performance in antioxidant/reducing activity, and inhibit the growth of tested bacteria and yeast. The PPAgNPs were the most effective against the first instar larvae instar (LC50 = 68.32 µg/ml), followed by pomegranate extract with (LC50 = 2852 µg/ml). The results indicated that obvious increase in polyphenols content in silver nanoparticles enhance their larvicidal effect and increasing mortality of 1st larval of S. littoralis Egyptian leafworms causing additive effect and synergism. We recommend recycling phenolic enriched agricultural wastes in producing green silver nanoprticles to control cotton leafworm that causes economic loses to crops.  相似文献   

3.
Among more than 50 isolates ofBacillus thuringiensis Berliner (B.t.) tested, 7 incited 100% mortality when 2nd instar larvae ofSpodoptera littoralis Boisduval were fed on alfalfa leaves dipped in a spore-crystal suspension of 108 colony forming units/ml. Among those isolates,B.t. 24 demonstrated the highest activity. Larvae of instars 1 and 2 were the most susceptible toB.t. Susceptibility decreased with larval development. However, larvae of all instars were killed by isolateB.t. 24. Larvae that survived after feeding withB.t. 24 were retarded and fed less. Their weight relative to the controls was lower as the spore concentration on the leaves on which they fed was higher. Survival of the spores in the field dropped drastically to 2% after 4 days. Insecticidal activity of the sprayed suspension on those leaves, however, remained significant.B.t. 24 was also effective against larvae on cotton plants in the greenhouse and in a preliminary field experiment. Numbers of colony forming units recovered from leaves dipped in suspension of various spore concentrations showed significant correlation with the initial concentrations as did sprayed leaves. However, colony forming units recovered from sprayed leaves were 5–7.5 fold lower than from dipped leaves. Dipped cotton leaves showed 3.1×10?5 ml attached to 1 mm2 leaf surface whereas sprayed ones had 6×10?6 ml. Those data are important for the determination of spore concentrations in suspensions required for spraying. The isolateB.t. 24 was serotyped byH. de Barjac as H-6B. thuringiensis entomocidus.  相似文献   

4.
The extract of Achyranthes japonica was tested for effects on larval survival and development and the oviposition behavior of the diamondback moth, Plutella xylostella L. Chinese cabbage dipped in A. japonica extract solution showed 51–80% antifeedant activity for 5 days against P. xylostella larvae, and more larvae were also on untreated cabbage leaves 24 h after release. The mortality of P. xylostella larvae increased proportionally to the duration of dipping time in the extract, and both pupation and emergence rates of larvae feeding only on treated cabbage were lower than those for larvae raised on untreated or with a choice of cabbage. The 20-hydroxyecdysone (20E) concentration in leaves was approximately 549, 1232, 1275, and 1426 μg/g at 6, 12, 24, and 48 h after dipping treatment, respectively. Notably, naive females laid more eggs on untreated cabbage than on treated cabbage, and females from larvae raised on treated Chinese cabbage also preferred the non-treated leaves. Our results are in contrast to those from earlier studies using various insect models that confirmed most females prefer to lay eggs on the host type that was eaten in the larval stage (Hopkins host selection principle). Cabbage dipped in the A. japonica solution for 24 h caused 59% larval mortality and inhibited both pupation and emergence rates of the larvae when exposed to plants 15 and 22 days after planting in the field, with the 20E concentration in the treated cabbage leaves at 1600.9 ± 122.36 and 1386.8 ± 24.69 μg/g, respectively. Therefore, the biological effectiveness could be attributed to the 20E in the treated cabbage leaves.  相似文献   

5.
Bioassays were conducted to determine the susceptibility of egg masses of Mamestra brassicae and Spodoptera littoralis to different spore doses of Paecilomyces fumoso-roseus and Nomuraea rileyi at 20° and 25°C. P. fumoso-roseus was highly virulent against eggs, whereas N. rileyi provoked only a deferred mortality of larvae hatched from treated eggs. Nevertheless, larval mortality of S. littoralis caused by N. rileyi at 25°C was more effective after first-instar larval contamination than after egg mass treatment. The duration of the egg stage could explain differences of susceptibility between the two noctuids at 25°C. Scanning electron microscopical observations suggested two ways of contamination of newly hatched larvae. First, fungal germinations on the chorion surface suggested that newly hatched larvae might be infected by penetration of the egg integument before hatching. Second, conidia on the egg cuticle could be an entomopathogenic inoculum for newly emerging larvae which fed upon chorions. Results showed that pathogenicity of Hyphomycetes to noctuid eggs might be a promising area of investigation for biological control.  相似文献   

6.
Cannibalism in the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) (FAW), is a limiting factor in a baculovirus production system. To detect the impact of cannibalism, a two-step bioassay was conducted with different larval ages of FAW fed on two food sources (corn and castor bean leaves) contaminated with the S. frugiperda multiple-embedded nucleopolyhedrovirus. In a first bioassay, the food source affected the cannibalism, being higher for all larval ages tested (5-, 6- and 7-day-old larvae) in larvae fed on corn than on those fed on castor bean leaves. Larval mortality, weight equivalent and larval equivalents (LEs) per hectare decreased as the larval age increased. Larval weight, occlusion bodies (OBs)/larva and total OBs increased when the larval age increased. In a second bioassay, in which only 6- and 7-day-old larvae were used because of the performance in the first bioassay, the cannibalism rates were affected by the interaction between food sources and time of feeding (48 and 72 h), reaching the highest values for 6- and 7-day-old larvae fed on corn leaves for 72 h. Mortality of the FAW was affected by the interaction between food sources, larval age and time of feeding. The lowest mortalities were on 7-day-old larvae when they were fed on castor bean leaves for 48 and 72 h. Larval weight, OBs/larva, total OBs and LEs were affected by the interaction between food sources and larval age. A significant correlation was observed between larval weight and OBs/larva that fed on both food sources, suggesting that larval weight can be used to achieve a concentration to be sprayed in 1 ha.  相似文献   

7.
Eighteen Xenorhabdus isolates associated with Spanish entomopathogenic nematodes of the genus Steinernema were characterized using a polyphasic approach including phenotypic and molecular methods. Two isolates were classified as Xenorhabdus nematophila and were associated with Steinernema carpocapsae. Sixteen isolates were classified as Xenorhabdus bovienii, of which fifteen were associated with Steinernema feltiae and one with Steinernema kraussei. Two X. bovienii Phase II were also isolated, one instable phase isolated from S. feltiae strain Rioja and one stable phase from S. feltiae strain BZ. Four representative bacterial isolates were chosen to study their pathogenicity against Spodoptera littoralis with and without the presence of their nematode host. The four bacterial isolates were pathogenic for S. littoralis leading to septicemia 24 h post-injection and killing around 90% of the insect larvae 36 h post-injection, except for that isolated from S. kraussei. After 48 h of injection, this latter isolate showed a lower final population in the larval hemolymph (107 instead of 108 CFU per larvae) and a lower larval mortality (70% instead of 95-100%). The virulence of the nematode-bacteria complexes against S. littoralis showed similar traits with a significant insect larvae mortality (80-90%) 5 days post-infection except for S. kraussei, although this strain reached similar of larval mortality at 7 days after infection.  相似文献   

8.
This work illustrates potential adverse effects linked with the expression of proteinase inhibitor (PI) in plants used as a strategy to enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi) and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants expressing the mustard trypsin PI 2 (MTI-2) at different levels were obtained. First-instar larvae of the Egyptian cotton worm (Spodoptera littoralis Boisd.) were fed on detached leaves of these plants. The high level of MTI-2 expression in leaves had deleterious effects on larvae, causing mortality and decreasing mean larval weight, and was correlated with a decrease in the leaf surface eaten. However, larvae fed leaves from plants expressing MTI-2 at the low expression level did not show increased mortality, but a net gain in weight and a faster development compared with control larvae. The low MTI-2 expression level also resulted in increased leaf damage. These observations are correlated with the differential expression of digestive proteinases in the larval gut; overexpression of existing proteinases on low-MTI-2-expression level plants and induction of new proteinases on high-MTI-2-expression level plants. These results emphasize the critical need for the development of a PI-based defense strategy for plants obtaining the appropriate PI-expression level relative to the pest's sensitivity threshold to that PI.  相似文献   

9.
This work aims to evaluate the antibacterial activity of biological zinc nanoparticles (BIO-ZnONPs) against pathogenic fish bacteria and assess the effect of BIO-ZnONPs on the performance, behavior, and immune response in Nile tilapia (Oreochromis niloticus) as compared to chemical zinc nanoparticles (CH- ZnONPs). Aspergillus niger TS16 fabricated the BIO-ZnONPs were spherical shape with the average size of 45 nm and net charge of ?27.23 mV. Generally, the results indicate that BIO-ZnONPs were more effective than CH- ZnONPs in enhancing the performance properties of Nile tilapia. Five experimental groups of Nile tilapia (initial body weight of 20.2 g) were treated with two concentrations of 0.5 and 1 mg L?1 from biological and chemical ZnONPs, while the fifth group was served as a control. After ten weeks of treated water with ZnONPs, the performance, feed efficiency parameters, feeding, and swimming behaviors significantly improved in BIO-ZnONPs treated groups (P < 0.05). The liver function, LYZ activity, and NBT values were significantly enhanced in the 0.5 mg L?1 BIO-ZnONPS group compared to CH- ZnONPs group and control (P < 0.05). Furthermore, the lowest cortisol and the highest testosterone and growth hormone levels were recorded in 1 mg L?1 BIO-ZnONPs group. Regarding the antibacterial effects, BIO-ZnONPs displayed the lower total bacterial loads in water and fish tissues (intestine, gills, skin, and muscle) and the maximum antibacterial properties against pathogenic bacteria (Listeria monocytogenes, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Aeromonas hydrophila). Our study exemplifies novel findings of BIO-ZnONPs in the promotion of fish health and production and its antibacterial properties in Nile tilapia.  相似文献   

10.
《Journal of Asia》2020,23(1):67-75
Eleven monoterpenes, phenylpropenes and sesquiterpenes were evaluated for their insecticidal and growth inhibitory activities against the second and fourth larval instars of Spodoptera littoralis. Among the tested compounds, 1,8-cineole revealed the highest fumigant toxicity against the 2nd and 4th larval instars with LC50 values of 2.32 and 3.13 mg/L air, respectively. The monoterpenes, p-cymene, α-terpinene, (−)α-pinene and (−)-carvone were highly toxic to both larval stages as their LC50 values ranged between 7.35 and 13.79 mg/L air against 2nd larval instar and between 14.66 and 32.02 mg/L air against 4th larval instar. In topical application assay against the 4th larval instar, (−)-carvone (LD50 = 0.15 mg/larva) and cuminaldehyde (LD50 = 0.27 mg/larva) were the most potent contact toxicants. In residual film assay, trans-cinnamaldehyde, (−)-citronellal and p-cymene showed the highest insecticidal activity against the 2nd larval instar, while α-terpinene and (−)-carvone were most effective compounds against the 4th larval instar. Moreover, the tested compounds caused strong growth reduction of both larval stages with growth inhibition higher than 80% in the 2nd larval instar and higher than 70% in the 4th larval instar. On the other hand, (−)-carvone, cuminaldehyde and (Z,E)-nerolidol showed pronounced inhibitory effects on acetylcholinesterase (AChE) and adenosine triphosphatases (ATPases) activity of S. littoralis larvae. Cuminaldehyde (IC50 = 1.04 mM) and (Z,E)-nerolidol (IC50 = 0.02 mM) caused the highest inhibition of AChE and ATPases, respectively. Taken together, the results indicate that monoterpenes, phenylpropenes and phenylpropenes could be used to develop new botanical insecticides for S. littoralis management.  相似文献   

11.
Two plant essential oils; camphor and castor were tested for insecticidal and antifeedant activity against the 4th instar larvae of Spodoptera littoralis, a serious pest on cotton in Egypt. Also the impact of LC10 of both oils on some physiological parameters in larvae was studied by using leaf dipping technique. Analysis of both oils using GC–MS revealed several insecticidal and antifeedant compounds. Our results showed higher insecticidal activity and antifeedant index of camphor oil against S. littoralis. The LC50 and the antifeedant indices were 163.1, 246.8?mg/ml and 12.69, 6.62% for camphor and castor bean oil, respectively. The total hemocyte count (THC) and differential hemocyte count (DHC) were reduced significantly after 48?h of treatment compared to controls. Both oils reduced all types of hemocytes except plasmatocytes which were reduced only by castor oil. Camphor oil decreased total proteins and carbohydrates while castor oil targeted only carbohydrate content. Both oils didn't affect the amount of total lipids. Lipase, α-amylase and glucose-6-phosphate dehydrogenase (G6PD) enzyme activities were increased significantly in larvae treated with camphor oil than other treatments. These results clearly indicate that castor and camphor oils can affect the nutritional status in S. littoralis larvae, thereby changing the internal metabolic processes in the larvae which make them as potential control agents in IPM programs against S. littoralis.  相似文献   

12.
We investigated the effects of a Bt maize hybrid on fitness and digestive physiology of the ground-dwelling predator Poecilus cupreus L., as compared with the near-isogenic hybrid. A tritrophic assay revealed that there was a great decline in the detection of Cry1Ab toxin through the trophic chain, the concentration of the toxin being 945, 349 and 37 ng g−1 of fresh weight in Bt maize leaves, Spodoptera littoralis (Boisduval) larvae and P. cupreus larvae, respectively. Moreover, the toxin was only detected in 8% of the P. cupreus adults collected from fields growing Bt maize. Developmental time of both larvae and pupae of P. cupreus was not adversely affected by the Cry1Ab toxin via fed-prey. To elucidate potential detrimental effects due to a reduction in the quality of the prey, we assessed the digestive proteolytic activities of P. cupreus adults from a laboratory culture and insects collected in commercial Bt and non-Bt maize fields. Field-collected P. cupreus adults had higher proteolytic activities than those reared in the laboratory, whereas no significant differences were found between P. cupreus adults reared on Bt and non-Bt maize fed-S. littoralis or between P. cupreus adults collected in commercial Bt and non-Bt maize fields.  相似文献   

13.
Silver nanoparticles (AgNPs), manganese dioxide nanoparticles (MnO2NPs) and silver-doped manganese dioxide nanoparticles (Ag-doped MnO2NPs) were synthesized by simultaneous green chemistry reduction approach. Aqueous extract from the leaves of medicinally important plant Cucurbita pepo was used as reducing and capping agents. Various characterization techniques were carried out to affirm the formation of nanoparticles. HR-TEM analysis confirmed the size of nanoparticles in the range of 15–70 nm and also metal doping was confirmed through XRD and EDS analyses. FT-IR analysis confirmed that the presence of biomolecules in the aqueous leaves extract was responsible for nanoparticles synthesis. Further, the concentration of metals and their doping in the reaction mixture was achieved by ICP–MS. The growth curve and well diffusion study of synthesized nanoparticles were performed against food- and water-borne Gram-positive and Gram-negative bacterial pathogens. The mode of interaction of nanoparticles on bacterial cells was demonstrated through Bio-TEM analysis. Interestingly, AgNPs and Ag-doped MnO2 NPs showed better antibacterial activity against all the tested bacterial pathogens; however, MnO2NPs alone did not show any antibacterial properties. Hence, AgNPs and Ag-doped MnO2 NPs synthesized from aqueous plant leaves extract may have important role in controlling various food spoilage caused by bacteria.  相似文献   

14.
The present study investigates the effect of AgNPs on some biological parameters and total protein amount, antioxidant potential and catalase activity of silkworm Bombyx mori. Incorporation of AgNPs (100 μg mL–1) in supplementary diets results in significant increases in the larval weight and the antioxidant potential but significantly decreases the catalase activity. The relative growth rate decreases as the high concentration (1000 μg mL–1). Exposure to AgNPs also caused violent results in alteration of haemocyte including an immediate increase in THC, may due to the release of these haemocytes either from an increase in cell divisions or from attached haemocyte populations, and decline in the percentage of prohaemocytes and increase in the percentage of two immune-phagocytes, i.e., granulocytes and plasmatocytes. Also, AgNPs at 100 and 1000 μg mL–1 caused different levels of deformations on almost all haemocyte types and increased the antioxidant enzyme activity (catalase) in the haemolymph of treated larvae as a result of the toxic effects of treatment.  相似文献   

15.
The entomofaunal survey and its toxicity of Blumea mollis (Asteraceae) leaf aqueous extract-mediated (Bm-LAE) silver nanoparticles (AgNPs) were assessed against selected human vector mosquitoes (HVMs). A total of 1800 individuals of 29 species belongs to 7 genera were identified. Month-wise and Genus-wise abundance of HVMs larval diversity were calculated and one-way ANOVA statistically analyzed the average physico-chemical characteristics. The relationship between physicochemical characteristics and HVMs larvae in KWS was interpreted. The total larval density and container index were 23530.18 and 1961.85 examined against 10 different containers. Various spectroscopic and microscopic investigation characterized Bm-AgNPs. The Bm- AgNPs tested against HVMs larvae, the predominant LC50/LC90 values of 18.17/39.56, 23.45/42.49 and 21.82/40.43 μg/mL were observed on An. subpictus Cx. vishnui and Ae. vittatus, respectively. The findings of this investigation, improperly maintained drainages, containers and unused things in study sites, are engaged to HVMs development. This will be essential for designing and implementing HVMs control. The larval toxic potentiality of Bm- AgNPs had a prompt, inexpensive and compelling synthesis of multi-disperse action against HVMs.  相似文献   

16.
Water extract of fresh frass of Spodoptera littoralis larval instars (L1–3, L4, L5 and L6) fed on Castor oil leaves was prepared by soaking at concentration (20?g frass/50?ml distiled water) followed by steering before filtration. Oviposition deterrent activity of the extract to S. littoralis and A. ipsilon adult females was evaluated as the mean number of laid eggs in treatments in comparison with control under laboratory conditions. Total amount of phenols and flavonoids in larval frass was determined. Extraction of L6 frass obtained complete oviposition deterrent to S. littoralis adult moths and the minimum number of laid eggs by A. ipsilon adult females (11.8?eggs/female) in comparison with control (1026.0 and 848.2?eggs/female respectively). Maximum number of laid eggs by S. littoralis females was 361.0/f at treatment with L1–3 frass extract and 748.0/adult female of A. ipsilon at treatment with L4 frass extract. Low amount of phenols and/or flavonoids in frass extract of L6 increased the oviposition deterrent effect while high amount of them as obtained in L4 frass extract (3.504 and 1.610%, respectively) decreased the effect at both of tested insects.  相似文献   

17.
Larvae of the Karner blue butterfly, Lycaeidesmelissasamuelis, feed solely on wild lupine, Lupinusperennis, from the emergence to summer senescence of the plant. Wild lupine is most abundant in open areas but Karner blue females oviposit more frequently on lupines growing in moderate shade. Can differences in lupine quality between open and shaded areas help explain this disparity in resource use? Furthermore, many lupines are senescent before the second larval brood completes development. How does lupine senescence affect larval growth? We addressed these questions by measuring growth rates of larvae fed lupines of different phenological stages and lupines growing under different shade conditions. The habitat conditions under which lupines grew and plant phenological stage did not generally affect final larval or pupal weight but did significantly affect duration of the larval period. Duration was shortest for larvae fed leaves from flowering lupines and was negatively correlated with leaf nitrogen concentration. Ovipositing in areas of moderate shade should increase?second-brood larval exposure to flowering lupines. In addition, larval growth was significantly faster on shade-grown lupines that were in seed than on similar sun-grown lupines. These are possible advantages of the higher-than-expected oviposition rate on shade-grown lupines. Given the canopy-related trade-off between lupine?abundance and quality, maintenance of canopy heterogeneity is an important conservation management goal. Larvae were also fed leaves growing in poor soil conditions and leaves with mildew infection. These and other feeding treatments that we anticipated would inhibit larval growth often did not. In particular, ant-tended larvae exhibited the highest weight gain per amount of lupine eaten and a relatively fast growth rate. This represents an advantage of ant tending to Karner blue larvae.  相似文献   

18.
Recent studies have shown that transgenic insect resistant plants can have negative effects on non-target herbivores as well as on beneficial insects. The study of tritrophic interactions gives insight into the complex mechanisms of food webs in the field and can easily be incorporated into a tiered risk assessment framework. We investigated the effects of transgenic maize (Zea mays) expressing insecticidal proteins derived from Bacillus thuringiensis (Bt maize) on Spodoptera littoralis, a non-target herbivore, and on the hymenopteran parasitoid Cotesia marginiventris. In a laboratory study, S. littoralis larvae were reared for their whole lifespan on a mixture of leaves and stems from 2–4-week old Bt maize plants. S. littoralis survival, developmental times and larval weights were significantly affected by Bt maize diet. However, adult moths, which survived development on Bt maize, were the same size as the adults from the control group.C. marginiventris survival, developmental times and cocoon weights were significantly negatively affected if their S. littoralis host larva had been fed Bt maize. ELISA tests confirmed that S. littoralis larvae ingest high amounts of Cry1A(b) toxin while feeding on Bt maize. In S. littoralis pupae and in C. marginiventris cocoon silk, only traces of the toxin could be detected. No toxin was found in S. littoralis and C. marginiventris adults. Thus the toxin is not accumulating in the trophic levels and in fact appears to be excreted. Our results suggest that the effects on C. marginiventris when developing in susceptible S. littoralis larvae are indirect (host mediated). The biological relevance of those results and the significance of this study in risk assessment are discussed.  相似文献   

19.
The current study evaluated the hazards of Zinc oxide nanoparticles (ZnONPs) on Nile Tilapia liver and gill antioxidants enzymes activities and antioxidants genes expressions. The ameliorative action of vitamins E and C mixture was investigated. Two hundred males of Nile Tilapia were exposed to one and two mg?L?1 of ZnONPs either with or without vitamin C and E mixture for 7 and 15?days. Glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities and gene expression as well glutathione (GSH) and lipid peroxide (LPO) levels were investigated. The results revealed that the exposure to ZnONPs could induce alterations in the liver and gills antioxidants and LPO of Nile Tilapia. Moreover, the mixture of vitamin E and C highly effective in alleviation the toxic effect of ZnONPs.  相似文献   

20.
The characterized crude extracts of seven Penicillium isolates were bioassayed against Spodoptora littoralis larvae for weight reduction and mortality. A total of 15 metabolites were detected in the extracts, 13 of which were named. Five extracts caused significant reductions in weight and four of these caused significant increases in mortality, both at the P < 0.05 level. Seven purified secondary metabolites selected from those present in the crude extracts were bioassayed at 10 ppm against Drosophila melanogaster for feeding inhibition and S. littoralis for feeding inhibition and mortality. Significant effects (P < 0.05) were observed in all three assays for ochratoxin A, brevianamide A, citrinin, and penicillic acid. Viomellein significantly (P < 0.05) reduced feeding in D. melanogaster and survival in S. littoralis. Cyclopenol significantly (P < 0.05) inhibited feeding in both insects but not survival of S. littorolis. Significant effects were not observed for patulin (P > 0.05). High levels of feeding inhibition were obtained for brevianamide A (84.4 ± 18.21%) and penicillic acid (95.1 ± 1.21 %) against S. littoralis. Cyclopenol and brevianamide A were found to be antagonistic, and this is the first valid toxicity data ascribed to these metabolites. The implications of these results with respect to potential mycopesticides are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号