首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The production of cellulolytic enzymes by Aspergillus niger on lignocellulosic substrates groundnut fodder, wheat bran, rice bran and sawdust in solid state fermentation in a laboratory scale was compared. Czapek Dox liquid broth amended with cellulose (0.5%) was used to moisten lignocellulosic solid supports for cultivation of Aspergillus niger. The production of filter paperase, carboxymethyl cellulase and -glucosidase were monitored at daily intervals for 5 days. The peak production of the enzymes occurred within 3 days of incubation. Among solid supports used in the study, wheat bran was the best solid matrix followed by groundnut fodder in production of cellulolytic enzymes in solid state fermentation. Groundnut fodder supported significant production of FPase (2.09 FPU/g), CMCase (1.36 U/g) and -glucosidase activity (0.0117 U/g) in solid state fermentation. Considerable secretion of protein (5.10 mg/g) on groundnut fodder at peak time interval 1st day of incubation was recorded.  相似文献   

2.
PfMig188, a catabolically derepressed engineered strain of the hyper-cellulolytic fungus Penicillium funiculosum NCIM1228, was investigated for the efficacy of its secretome for biomass saccharification. An inexpensive version of media containing microcrystalline cellulose, wheat bran and soya protein was optimized for producing a high-quality secretome from the PfMig188 strain in both shake flasks and in a 20-L bioreactor. The activities of four classes of core cellulolytic enzymes required for saccharification in the PfMig188 secretome, namely, cellobiohydrolase (Avicelase activity), endoglucanase (CMCase activity), β-glucosidase (PNPGase activity) and xylanase (xylanase activity), were found to be 2.29 U/mL, 28.24 U/mL, 150 U/mL and 76 U/mL, respectively. The saccharification potential of the PfMig188 secretome was evaluated on rice straw and sugarcane bagasse pretreated with nitric acid and/or ammonium hydroxide. Saccharification performed using a 15 % (w/v) biomass load and a 3% (w/w) enzyme load released >100 g/L sugar in the hydrolysate, irrespective of the type of biomass and pre-treatment, with >80 % hydrolysis. Furthermore, the presence of lignin in nitric acid-pretreated biomass only marginally affected saccharification. Overall, the results demonstrated that the PfMig188 secretome, having relatively broad substrate specificity, is a viable and efficient substitute for T. reesei-based secretomes for diverse biomass saccharification.  相似文献   

3.
Sporotrichum thermophile BJAMDU5 secreted high titres of xylanolytic and cellulolytic enzymes in solid state fermentation using mixture of wheat straw and cotton oil cake (ratio 1:1) at 45?°C, pH 5.0 after 72 h inoculated with 2.9?×?107 CFU/mL conidiospores. Supplementation of solid medium with lactose and ammonium sulphate further enhanced the production of hydrolytic enzymes. Among different surfactants studied, Tween 80 enhanced the production of all enzymes [3455 U/g DMR (dry mouldy residue), 879.26 U/g DMR, 976.28 U/g DMR and 35.10 U/g DMR for xylanase, CMCase (Carboxymethylcellulase), FPase (Filter paper activity) and β-glucosidase, respectively] as compared to other surfactants. Recycling of solid substrate reduced the production of all these enzymes after second cycle. End products analysis by TLC showed the ability of hydrolytic enzymes of S. thermophile to liberate monomeric (xylose and glucose) as well as oligomeric (xylobiose, cellobiose and higher ones) sugars. Supplementation of enzyme resulted in improved nutritional properties of the bread. Formation of oligomeric sugars by xylanase enzyme of S. thermophile BJAMDU5 make it a good candidate in food industry.  相似文献   

4.
The enhancement of enzyme complex produced by Penicillium echinulatum grown in several culture media components (bagasse sugarcane pretreated by various methods, soybean meal, wheat bran, sucrose, and yeast extract) was studied to increment FPase, xylanase, pectinase, and β-glucosidase enzyme activities. The present results indicated that culture media composed with 10 g/L of the various bagasse pretreatment methods did not have any substantial influence with respect to the FPase, xylanase, and β-glucosidase attained maximum values of, respectively, 2.68 FPU/mL, 2.04, and 115.4 IU/mL. On the other hand, proposed culture media to enhance β-glucosidase production composed of 10 g/L steam-exploded bagasse supplemented with soybean flour 5.0 g/L, yeast extract 1.0 g/L, and sucrose 10.0 g/L attained, respectively, 3.19 FPU/mL and 3.06 IU/mL while xylanase was maintained at the same level. The proteomes obtained from the optimized culture media for enhanced FPase, xylanase, pectinase, and β-glucosidase production were analyzed using mass spectrometry and a panel of GH enzyme activities against 16 different substrates. Culture medium designed to enhance β-glucosidase activity achieved higher enzymatic activities values (13 measured activities), compared to the culture media for FPase/pectinase (9 measured activities) and xylanase (7 measured activities), when tested against the 16 substrates. Mass spectrometry analyses of secretome showed a consistent result and the greatest number of spectral counts of Cazy family enzymes was found in designed β-glucosidase culture medium, followed by FPase/pectinase and xylanase. Most of the Cazy identified protein was cellobiohydrolase (GH6 and GH7), endoglucanase (GH5), and endo-1,4-β-xylanase (GH10). Enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse performed with β-glucosidase enhanced cocktail achieved 51.4 % glucose yield with 10 % w/v insoluble solids at enzyme load of 15 FPU/g material. Collectively the results demonstrated that it was possible to rationally modulate the GH activity of the enzymatic complex secreted by P. echinulatum using adjustment of the culture medium composition. The proposed strategy may contribute to increase enzymatic hydrolysis of lignocellulosic materials.  相似文献   

5.
Trichoderma sp. is a potential cellulase producing mesophilic fungi which grow under mild acidic condition. In this study, growth and nutritional conditions were manipulated for the maximum and cost-effective production of cellulase using lab strain Trichoderma sp. RCK65 and checked for its efficiency in hydrolysis of Prosopis juliflora (a woody substrate). Preliminary studies suggested that when 48 h old secondary fungal culture (20 % v/w) was inoculated in wheat bran moistened with mineral salt solution (pH 4.5 and 1:3 solid to moisture ratio), incubated at 30 °C and after 72 h, it produced maximum cellulase (CMCase 145 U/gds, FPase 38 U/gds and β-glucosidase 105 U/gds). However, using statistical approach a S:L ratio (1:1) was surprisingly found to be optimum that improved cellulase that is CMCase activity by 6.21 %, FPase activity by 23.68 % and β-glucosidase activity by 37.28 %. The estimated cost of crude enzyme (Rs. 5.311/1000 FPase units) seems to be economically feasible which may be due to high enzyme titre, less cultivation time and low media cost. Moreover, when the crude enzyme was used to saccharify pretreated Prosopis juliflora (a woody substrate), it resulted up to 83 % (w/w) saccharification.  相似文献   

6.
绿色木霉ZY-1固态发酵产纤维素酶   总被引:1,自引:0,他引:1  
利用筛选的绿色木霉ZY-1(Trichoderma viride ZY-1)固态发酵产纤维素酶,采用稻草和麸皮为底物,考察稻草与麸皮比例随发酵时间对产酶的影响。结果表明:底物中,在m(稻草):m(麸皮)为0:5和1:4时,发酵48h,pH保持4.5左右,还原糖量急剧上升,胞外蛋白产量最低;仅以稻草作底物时,整个发酵过程中pH约为7,还原糖量最低,胞外蛋白产量较高而滤纸酶活、羧甲基纤维素酶(CMCase)和β-葡萄糖苷酶(β-Gase)酶活均较低;在m(稻草):m(麸皮)为3:2时,发酵96h,滤纸酶活达最大值5.01U/g干曲;m(稻草):m(麸皮)为1:4时,发酵96h,β-Gase酶活达最大值4.6U/g干曲;m(稻草):m(麸皮)为4:1时,发酵72h,CMCase酶活达最大值6.01U/g干曲。因此,底物中存在适量的稻草和麸皮有利于Trichoderma viride ZY—1产纤维素酶。  相似文献   

7.
Reducing cellulase cost remains a major challenge for lignocellulose to fuel and chemical industries. In this study, mutants of a novel wild-type cellulolytic fungal strain Talaromyces pinophilus OPC4-1 were developed by consecutive UV irradiation, N-methyl-N`-nitro-N-nitrosoguanidine (NTG) and ethylmethane sulfonate (EMS) treatment. A potential mutant EMM was obtained and displayed enhanced cellulase production. Using Solka Floc cellulose as the substrate, through fed-batch fermentation, mutant strain T. pinophilus EMM generated crude enzymes with an FPase activity of 27.0 IU/mL and yield of 900 IU/g substrate. When corncob powder was used, strain EMM produced crude enzymes with an FPase activity of 7.3 IU/mL and yield of 243.3 IU/g substrate. In addition, EMM crude enzymes contained 29.2 and 16.3 IU/mL β-glucosidase on Solka Floc cellulose and corncob power, respectively. The crude enzymes consequently displayed strong biomass hydrolysis performance. For corncob hydrolysis, without supplement of any commercial enzymes, glucose yields of 591.7 and 548.6 mg/g biomass were obtained using enzymes produced from Solka Floc cellulose and corncob powder, respectively. It was 553.9 mg/g biomass using the commercial enzyme mixture of Celluclast 1.5 L and Novozyme 188. Strain T. pinophilus EMM was therefore a potential fungus for on-site enzyme production in biorefinery processes.  相似文献   

8.
Abstract

The current study evaluated the production and characterization of β-glucosidase by the thermophilic fungus Thermomucor indicae-seudaticae in solid-state fermentation of wheat bran. Isolated fungi have significant amounts of β-glucosidase, an enzyme that may be applied to different industrial processes, such as the production of fuels, food, and other chemical compounds. Maximal enzyme activity occurred in pH 3.5–4.5 and at 70?°C. The enzyme exhibited high thermostability, for 1?h, up to 60?°C, and good tolerance to glucose (10?mM) and ethanol (10%). The optimization of fermentative parameters on the production of β-glucosidase was carried out by evaluating the best supplementary nutrient source, pH of nutrient solution, initial substrate moisture and fermentation temperature. The optimization of the above fermentation parameters increased enzyme activity by 120.0%. The highest enzymatic activity (164.0?U/g) occurred with wheat bran containing 70% initial moisture, supplemented with 1.0% (NH4)2SO4 solution at pH 5.5–6.0 and fungus incubated at 40?°C. A more detailed study of β-glucosidase suggested that Sulfur is an important component of the main amino acid present in this enzyme. The enhancer of the enzyme activity occurred when the fungus was grown on wheat bran supplemented with a sulfur-containing solution. In fact, increasing the concentration of sulfur in the solution increased its activity.  相似文献   

9.
The abundance of oil palm decanter cake (OPDC) is a problem in oil palm mills. However, this lignocellulosic biomass can be utilized for cellulase and polyoses production. The effectiveness of chemical and physical pretreatment in reducing the lignin content was studied by saccharification using a Celluclast 1.5 L and scanning electron microscope. Physicochemical pretreatment of OPDC with 1% (w/v) NaOH and autoclaving at 121°C for 20 min increased potential polyoses produced to 52.5% and removed 28.7% of the lignin content. The optimized conditions for cellulase production by a locally isolated fungus were a time of 120 h, a substrate of untreated OPDC, a spore concentration of 1 × 107 spore/mL, a temperature of 30°C, and a pH between 7.0 and 7.5. Trichoderma asperellum UPM1 produced carboxymethylcellulase (CMCase), ??-glucosidase and filter paper activity (FPase) in the following concentrations: 17.35, 0.53, and 0.28 U/mL, respectively. Aspergillus fumigatus UPM2 produced the CMCase, ??-glucosidase and FPase in the following amounts: 10.93, 0.76, and 0.24 U/mL. The cellulases from T. asperellum UPM1 produced 2.33 g/L of polyoses and the cellulases from A. fumigatus UPM2 produced 4.37 g/L of polyoses.  相似文献   

10.
The objective of this work is to investigate the utilization of two abundant agricultural residues in Brazil for the production and application of cellulolytic enzymes. Different materials obtained after pretreatment of sugarcane bagasse, as well as pure synthetic substrates, were considered for cellulase production by Penicillium funiculosum. The best results for FPase (354 U L?1) and β-glucosidase (1,835 U L?1) production were observed when sugarcane bagasse partially delignified cellulignin (PDC) was used. The crude extract obtained from PDC fermentation was then partially characterized. Optimal temperatures for cellulase action ranged from 52 to 58°C and pH values of around 4.9 contributed to maximum enzyme activity. At 37°C, the cellulases were highly stable, losing less than 15% of their initial activity after 23 h of incubation. There was no detection of proteases in the P. funiculosum extract, but other hydrolases, such as endoxylanases, were identified (147 U L?1). Finally, when compared to commercial preparations, the cellulolytic complex from P. funiculosum showed more well-balanced amounts of β-glucosidase, endo- and exoglucanase, resulting in the desired performance in the presence of a lignocellulosic material. Cellulases from this filamentous fungus had a higher glucose production rate (470 mg L?1 h?1) when incubated with corn cob than with Celluclast®, GC 220® and Spezyme® (312, 454 and 400 mg L?1 h?1, respectively).  相似文献   

11.
Cellulase activity measured as filter paper digesting activity (FPase) and carboxymethyl cellulase (CMCase) was demonstrated in hindgut extracts of the cockroach Periplaneta americana. The highest activities measured amounted to 0.89 and 0.12 U · ml-1 for CMCase and FPase, respectively. The cellulolytic capacity of the hindgut population increased dramatically when protozoa were present, and the activities were found to vary depending on the feeding regimen. Cellulose-rich diets induced high protozoal numbers, resulting in a high cellulase activity. A close correlation was found between the number of Nyctotherus ovalis organisms, the major protozoans in the hindgut, and both FPase and CMCase activity. Since the numbers of this protozoan also correlated with the methane production of the insect, it appears that N. ovalis is responsible for the major part of cellulolytic and methanogenic activity found in the hindgut of P. americana.  相似文献   

12.
In the present study, we investigated a potent extracellular β-glucosidases secreted by the thermophilic fungal strain AX4 of Talaromyces thermophilus, isolated from Tunisian soil samples. This strain was selected referring to the highest thermostability of its β-glucosidases compared to the other fungal isolates. The β-glucosidase production was investigated by submerged fermentation. The optimal temperature and initial pH for maximum β-glucosidase production were 50°C and 7.0, respectively. Several carbon sources were assayed for their effects on β-glucosidase production, significant yields were obtained in media containing lactose 1% (3.0?±?0.36?U/ml) and wheat bran 2% (4.0?±?0.4?U/ml). The combination of wheat bran at 2% and lactose at 0.8% as carbon source enhanced β-glucosidase production, which reached 8.5?±?0.28?U/ml. Furthermore, the β-glucosidase-rich enzymatic juice of T. thermophilus exhibited significant synergism with Trichoderma reesei (Rut C30) cellulases for pretreated waste paper (PWP) hydrolysis. Interestingly, the use of this optimal enzymatic cocktail increased 4.23 fold the glucose yield after saccharification of waste paper. A maximum sugar yield (94%) was reached when using low substrate (2%) and enzyme loading (EC1).  相似文献   

13.
Cellulolytic enzymes produced by Trichoderma sp. have attracted interest in converting the biomass to simple sugars in the production of cellulosic ethanol. In this work, a novel cellulolytic strain M501 was isolated and identified as T. gamsii by sequencing the ITS rDNA region. The production of cellulase (CMCase) by T. gamsii M501 was enhanced by employing statistical methods. The strain grown in the optimized production medium composed of mineral salts, microcrystalline cellulose (13.7 g/l), tryptone (4.8 g/l) and trace elements (2 mL/l) at pH 5.5 and 28 °C for 72 h produced a maximum CMCase of 61.3 U/mL. The optimized production medium also showed the other enzyme activity of FPU (2.6 U/mL), β-glucosidase (2.1 U/mL), xylanase (681 U/mL) and β- xylosidase (0.6 U/mL). The crude cellulase cocktail produced by T. gamsii M501 efficiently hydrolyzed alkali pretreated sugarcane bagasse with glucose and xylose yield of 78 % and 74 % respectively at 10 % solid loading. This study is the first of its kind research on biomass saccharification using T. gamsii cellulase cocktail. Therefore, the novel strain T. gamsii M501 would be useful for further development of an enzyme cocktail for cellulosic ethanol production.  相似文献   

14.
Culture conditions for enhanced cellulase production from a newly isolated brown rot fungus, Fomitopsis sp. RCK2010 were optimized under solid state fermentation. An initial pH of 5.5 and moisture ratio of 1:3.5 (solid:liquid) were found to be optimal for maximum enzyme production. Of the different carbon sources tested wheat bran gave the maximum production of CMCase (71.526 IU/g), FPase (3.268 IU/g), and β-glucosidase (50.696 IU/g). Among the nitrogen sources, urea caused maximum production of CMCase (81.832 IU/g), where as casein and soyabean meal gave the highest FPase (4.682 IU/g) and β-glucosidase (69.083 IU/g) production, respectively. Among amino acids tested glutamic acid gave the highest production for CMCase (84.127 IU/g); however 4-hydroxy-l-proline stimulated maximum FPase production (6.762 IU/g). Saccharification of pretreated rice straw and wheat straw by crude enzyme extract from Fomitopsis sp. RCK2010 resulted in release of 157.160 and 214.044 mg/g of reducing sugar, respectively.  相似文献   

15.
Abstract

Myceliophthora thermophila encodes for large number of carbohydrate-active enzymes (CAZymes) involved in lignocellulosic biomass degradation. The mould was grown on rice straw in solid state fermentation at pH 5.0 and 45?°C that produced high levels of cellulolytic and xylanolytic enzymes i.e. 2218.12, 515.23, 478.23, 13.34?U/g DMR for xylanase, CMCase, FPase and β-glucosidase, respectively. The secretome analysis of M. thermophila BJAMDU5 by mass spectroscopy, described 124 different proteins with majority of CAZymes consisting of glycosyl hydrolases (GH), lytic polysaccharide mono-oxygenases (LPMO), carbohydrate esterases (CE) and polysaccharide lyases (PL). Furthermore, the enzyme cocktail of the mould was evaluated for hydrolysis of steam treated rice straw that produced 184.59?mg/g substrate reducing sugars after 24?h, which was used for production of bioethanol by using fast fermenting yeast Saccharomyces cerevisiae resulting in high production of bioethanol.  相似文献   

16.
An extracellular high molecular weight β-glucosidase was secreted by a local strain P1 of Beauveria bassiana. The enzyme was produced in the presence of various carbon sources, namely glucose, maltose, lactose, glycerol, starch, wheat bran and gruel. The highest level of β-glucosidase activity was produced with wheat bran at the concentration of 3%. Glucose caused a repressor effect on the β-glucosidase expression in a dose-dependent manner. The highest enzyme production level was obtained at initial pH of 6.0 and 7.0 in the culture medium. The zymography analysis revealed that B. bassiana secreted a β-glucosidase with high molecular weight between 400 and 600 kDa. The enzymatic preparation was characterized and showed temperature and pH optima of 55°C and 5.0, respectively. The enzyme was stable at 40 and 50°C but its stability declined at 60°C. Interestingly, this β-glucosidase had high stability at acid and basic pH saving its initial activity after 24 h incubation at pH from 3.0 to 11.0. It was stable also in presence of monovalent Na+ and K+ ions saving 60% of its initial activity at 2 M salts. Bivalent metal ions preserved totally or partially the enzymatic activity; in addition, Ba2+ was revealed as an activator. This is the first report that focuses on the production and the biochemical characterization of a β-glucosidase from the entomopathogenic fungus, B. bassiana.  相似文献   

17.
The main task of the present work is to search for fungal strains isolated from agricultural soil with the potential to produce cellulases/xylanase enzyme preparation for bio-finishing of textiles. The most potent fungal strain (SAF6) was subjected to molecular identification using 18 SrRNA and was identified as Penicillium sp. SAF6 with the novel accession number of KM222497. Factors affecting the produced mixed enzyme activity were investigated. The optimum conditions for achieving maximum activity of the cellulases (FPase, CMCase and β-glucosidase) in addition to xylanase were the initial culture pH media 5, yeast extract (1.5gN/L), medium-to-air ratio (1:5) for FPase and CMCase and (1:10) for β-glucosidase, at 30?°C for 8 days incubation period. Potential application of the prepared crude enzyme in bio-finishing of cellulosic substrates, namely, bleached cotton, linen and indigo dyed fabrics were explored. Using the multi-component enzyme at appropriate dosage and conditions brought about a significant improvement and surface modification of the treated cotton substrates.  相似文献   

18.
Direct utilization of untreated oil palm trunk (OPT) for cellulases and xylanase production by Aspergillus fumigatus SK1 was conducted under solid-state fermentation (SSF). The highest activities of extracellular cellulases and xylanases were produced at 80% moisture level, initial pH 5.0, 1 × 108 spore/g (inoculum) with 125 μm of OPT as sole carbon source. The cellulases and xylanase activities obtained were 54.27, 3.36, 4.54 and 418.70 U/g substrates for endoglucanase (CMCase), exoglucanase (FPase), β-glucosidase and xylanase respectively. The crude cellulases and xylanase required acidic condition to retain their optimum activities (pH 4.0). Crude cellulases and xylanase were more stable at 40 °C compared to their optimum activities conditions (60 °C for FPase and 70 °C for CMCase, β-glucosidase and xylanase). SDS-PAGE and zymogram analysis showed that Aspergillus fumigatus SK1 could secrete cellulases (endoglucanase, exoglucanase and β-glucosidase), xylanase and protease. Enzymatic degradation of alkaline treated OPT with concentrated crude cellulases and xylanases resulted in producing polyoses.  相似文献   

19.
Penicillium echinulatum was evaluated as a cellulolytic enzyme producer in shaking flasks and bioreactor submerged culture using sugarcane bagasse as carbon source. Sodium hydroxide delignified steam-exploded pretreated bagasse (SDB) and hydrothermal pretreated bagasse had a maximum filter paper activity (FPase) of 2.4 and 2.6 FPU/mL, respectively. Delignified acid pretreated bagasse and Celufloc 200TM (CE) carbon sources displayed maximum FPase of 1.3 and 1.6 FPU/mL while in natura bagasse (INB) provided the lowest enzyme activity, ca. 0.4 FPU/mL. Measurement of surface specific area of lignocellulosic material and scanning electron microscopic images showed a possible correlation between fungal mycelia accessibility to lignocellulosic particles and obtained cellulolytic enzyme activity of fermentation broth. Fed-batch experiments performed in a controlled bioreactor attained the highest value of FPase of 3.7 FPU/mL, enzyme productivity of 25.7 FPU/L h, and enzyme yield from cellulose equal to 134 FPU/g with SDB. Enzyme hydrolysis of steam-pretreated bagasse accomplished with the obtained supernatant of fermentation broth (10 FPU/g of biomass and 5 % w/v) performed better than commercial cellulose complex. The results showed that P. echinulatum has potential to be used as an on-site enzyme platform aiming second bioethanol production from sugarcane lignocellulosic residue.  相似文献   

20.
The strain of Trichoderma reesei Rut C-30 was subjected to mutation after treatment with N-methyl-N′-nitro-N-nitrosoguanidine (NG) for 6 h followed by UV irradiation for 15 min. Successive mutants showed enhanced cellulase production, clear hydrolysis zone and rapid growth on Avicel-containing plate. Particularly, the mutant NU-6 showed approximately two-fold increases in activity of both FPA and CMCase in shake flask culture when grown on basal medium containing peptone (1%) and wheat bran (1%). The enzyme production was further optimized using eight different media. When a mixture of lactose and yeast cream was used as cellulase inducer, the mutant NU-6 yielded the highest enzyme and cell production with a FPase activity of 6.2 U ml−1, a CMCase activity of 54.2 U ml−1, a β-glucosidase activity of 0.39 U ml−1, and a fungal biomass of 12.6 mg ml−1. It deserved noting that the mutant NU-6 also secreted large amounts of xylanases (291.3 U ml−1). These results suggested that NU-6 should be an attractive producer for both cellulose and xylanase production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号