首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Abstract

An isolation procedure for the 20,000-dalton variant of human growth hormone has been devised to improve the yield of the final product. The improvement involved elimination of cumbersome steps that decreased yield, and modification of chromatography on DEAE-cellu-lose to provide better separation of the variant from the major form of growth hormone.

We reported (1) an isolation procedure for the 20,000-dalton variant of human growth hormone (hGH20K) (2) which provided quite homogeneous material but the yields were not optimum. The initial steps were cumbersome and losses resulted from them. In addition, there was the problem that in order to completely remove the major 22,000-dalton form of the hormone (hGH) during the final chromatography step (DEAE-cellulose), only the leading edge of the hGH20k?peak could be used. The trailing part of the peak was always mixed with hGH and reworking this mixture resulted in losses. We have modified the procedure so that time-consuming steps were eliminated and the final chromatography step was improved so that now the hGH20K can be separated from hGH by a single column.  相似文献   

2.
A technique is described to study the effect of acetylation of individual lysine residues in peptide hormones on the affinity for their receptors, and is illustrated for the case of human growth hormone (hGH) binding to somatogenic receptors. The hGH was partially acetylated with high specific activity [3H]-acetic anhydride and the product ([3H]-Ac-hGH) was incubated with solubilised affinity-purified somatogenic receptors (from male rat liver) in the presence and absence of excess unlabelled hGH. The receptor-bound and unbound labelled hormone were separated by gel filtration and subjected to HPLC tryptic peptide mapping after the addition of cold carrier Ac-hGH. Peaks of [3H] radioactivity were assigned to peptides corresponding to the acetylation of specific lysine residues in the hGH sequence by amino acid analysis and sequencing. Comparison of the relative intensities of corresponding [3H] peaks in the peptide maps of added receptor, bound and unbound [3H]-Ac-hGH, enabled the relative receptor-binding potencies of different acetylated hGH species to be determined. Acetylation of lysine 168 or 172 in hGH greatly decreases its receptor-binding affinity, acetylation of lysine 115 probably causes a minor decrease, whereas acetylation of lysines 38, 70, and the N-terminal amino group have no appreciable effect. Acetylation of lysine 140 causes a significant increase in receptor-binding affinity.  相似文献   

3.
We demonstrate for the first time, an expression system mimicking serine alkaline protease synthesis and secretion, producing native form of human growth hormone (hGH) from Bacillus subtilis. A hybrid‐gene of two DNA fragments, i.e., signal (pre‐) DNA sequence of B. licheniformis serine alkaline protease gene (subC) and cDNA encoding hGH, were cloned into pMK4 and expressed under deg‐promoter in B. subtilis. Recombinant‐hGH (rhGH) produced by B. subtilis carrying pMK4::pre(subC)::hGH was secreted. N‐terminal sequence and mass spectrometry analyses of rhGH confirm the mature hGH sequence, and indicate that the signal peptide was properly processed by B. subtilis signal‐peptidase. The highest rhGH concentration was obtained at t = 32 h as CrhGH = 70 mg L?1 with a product yield on substrate YrhGH/S = 9 g kg?1, in a glucose based defined medium. Fermentation characteristics and influence of hGH gene on the rhGH production were investigated by comparing B. subtilis carrying pMK4::pre(subC)::hGH with that of carrying merely pMK4. Excreted organic‐acid concentrations were higher by B. subtilis carrying pMK4::pre(subC)::hGH, whereas excreted amino‐acid concentrations were higher by B. subtilis carrying pMK4. The approach developed is expected to be applicable to the design of expression systems for heterologous protein production from Bacillus species. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
Selecting high-affinity binding proteins by monovalent phage display   总被引:20,自引:0,他引:20  
H B Lowman  S H Bass  N Simpson  J A Wells 《Biochemistry》1991,30(45):10832-10838
Variants of human growth hormone (hGH) with increased affinity and specificity for the hGH receptor were isolated using an improved phage display system. Nearly one million random mutants of hGH were generated at 12 sites previously shown to modulate binding to the hGH receptor or human prolactin (hPRL) receptor. The mutant hormones were displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within each particle. After three to six cycles of enrichment for hGH-phage particles that bound to hGH receptor beads, we isolated hGH mutants that exhibited consensus binding sequences for the hGH receptor. Residues previously identified as important for hGH receptor binding by alanine-scanning mutagenesis were more highly conserved by this selection method. However, other residues nearby were not optimal, and by mutating them, hormone variants having greater affinity and selectivity for the hGH receptor were isolated. This approach should be useful for those who wish to modify and understand the energetics of protein-ligand interfaces.  相似文献   

5.
Human placental lactogen (hPL) shares 85% sequence identity to human growth hormone (hGH) yet has some very different receptor-binding properties. For example, hPL binds 2300-fold weaker than hGH to the hGH receptor, yet these two hormones have similar affinities for prolactin receptors. We have expressed hPL in Escherichia coli, and we show that, like hGH, hPL requires zinc for tight binding to the extracellular domain of the human prolactin receptor (hPRLbp). In fact, hPL contains virtually the same receptor-binding determinants and zinc ligands (His-18, His-21, and Glu-174) that hGH uses for coordinating zinc in the hGH.hPRLbp complex. As with hGH, mutation of Glu-174 to Ala in hPL reduces the affinity for the hPRLbp by 1400-fold. We can increase the affinity of hPL by over 200-fold for the hGHbp by installing four hGH receptor determinants that are not conserved in hPL. By simultaneously introducing E174A, we produced a pentamutant whose binding affinity for the hGHbp is only 1.6-fold weaker than hGH, but whose binding affinity for the hPRLbp is weaker by greater than 1000-fold relative to wild-type hPL. Thus, we have identified an hPRLbp epitope in hPL, "recruited" an hGHbp epitope into hPL, and produced receptor selective analogs of hPL that are designed to bind tightly to either, neither, or both receptors. Such variants should be important molecular probes to link specific receptor-binding, activation, and biological events.  相似文献   

6.
7.
Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea) have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH) genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea +/− mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea +/− mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH) signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea +/− mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.  相似文献   

8.
We have previously shown that a monoclonal antibody (MAb) recognizing the human growth hormone (hGH) antigenic domain left exposed after binding to lactogenic receptors enhanced hGH binding probably through allosteric effects on the hormone binding site. Since receptors displaying different specificities would not recognize exactly the same hGH region, we explored whether some of our MAb could affect hGH binding to somatogenic receptors from rabbit liver and to human liver hGH-specific receptors.The effect of MAbAE5, AC8 and F11 on hGH binding was measured by determining the formation of125I-MAb:hGH:receptor complexes using two different experimental approaches. Results from procedure A, which involved the previous binding of the hormone to microsomes before adding125I-MAb, indicated that the hGH domain defined by epitopes AE5, AC8 and F11 is uncovered in the various hormone:receptor complexes.Procedure B was devised to reveal any alteration in the hGH molecule induced by the MAb. In this case preformed125I-MAb:hGH complexes were added to microsomes. Data showed that125I-MAb AE5:hGH complexes bound better to the various receptors than125I-MAb AE5 to hGH:receptor complexes. On the contrary, hGH previously bound to125I-MAb AC8 or125I-MAb F11 was less recognized by the receptors than the free hormone. Furthermore, binding of MAb AE5 or MAb F11 to hGH 20 K (a natural hGH variant lacking residues 32–46) also enhanced its affinity to the various receptors whereas MAb AC8 did not inhibit hGH 20 K binding.Results indicated that MAb recognizing the hGH antigenic area that remains unmasked after binding to different membrane-bound receptors are able to affect hormone binding site. MAb would induce either positive or negative allosteric changes in the hormone region involved in its binding to lactogenic, somatogenic and hGH-specific receptors.  相似文献   

9.
Summary Recombinant human growth hormone was administered orally to carp and serum levels of absorbed bioactive hormone were investigated using a highly sensitive Nb2 rat lymphoma cell bioassay and radioimmumoassay. Serum levels of bioactive hGH reached maximum values 30 min after oral intubation and then gradually decreased. Co-administration of the hormone with deoxycholate to fasted carp resulted in up to a 1000-fold increase in absorption compared to aqueous solutions of the hormone, but had no effect on the kinetics of the absorption process. Absorption of the hormone in starved fish was significantly greater than in fed fish. A linear dose-response relationship was observed for hGH in starved fish and the level of absorption in fed fish was influenced by the time interval from the last meal. The ratio of bioactive to immunoactive hGH in fasted fish indicated little loss of bioactivity and also that deoxycholate may be protective against hGH degradation. The present study demonstrates for the first time that biologically active hGH is absorbed in the common carp after oral intubation. Furthermore, the use of a biological detergent dramatically increased the extent of hGH absorption. Additional studies are required to establish the approapriate conditions (diet composition, feeding level, and frequency, etc.) in which polypeptide hormones could be introduced orally to fish.Abbreviations hGH human growth hormone - HRP horseradish peroxidase - RIA radioimmunoassay  相似文献   

10.
The β-subunit of the voltage-sensitive K+ channels shares 15–30% amino acid identity with the sequences of aldo–keto reductases (AKR) genes. However, the AKR properties of the protein remain unknown. To begin to understand its oxidoreductase properties, we examine the pyridine coenzyme binding activity of the protein in vitro. The cDNA of Kvβ2.1 from rat brain was subcloned into a prokaryotic expression vector and overexpressed in Escherichia coli. The purified protein was tetrameric in solution as determined by size exclusion chromatography. The protein displayed high affinity binding to NADPH as determined by fluorometric titration. The KD values for NADPH of the full-length wild-type protein and the N-terminus deleted protein were 0.1±0.007 and 0.05±0.006 M, respectively — indicating that the cofactor binding domain is restricted to the C-terminus, and is not drastically affected by the absence of the N-terminus amino acids, which form the ball and chain regulating voltage-dependent inactivation of the α-subunit. The protein displayed poor affinity for other coenzymes and the corresponding values of the KD for NADH and NAD were between 1–3 μM whereas the KD for FAD was >10 μM. However, relatively high affinity binding was observed with 3-acetyl pyridine NADP, indicating selective recognition of the 2′ phosphate at the binding site. The selectivity of Kvβ2.1 for NADPH over NADP may be significant in regulating the K+ channels as a function of the cellular redox state.  相似文献   

11.
Combinatorial shotgun alanine-scanning was used to assess intramolecular cooperativity in the high affinity site (site 1) of human growth hormone (hGH) for binding to its receptor. A total of 19 side-chains were analyzed and statistically significant data were obtained for 145 of the 171 side-chain pairs. The analysis revealed that 90% of the side-chain pairs exhibited no statistically significant pair interactions, and the remaining 10% of side-chain pairs exhibited only small interactions corresponding to cooperative interaction energies with magnitudes less than 0.4 kcal/mol. The statistical predictions were tested by measuring affinities for purified mutant proteins and were found to be accurate for five of six side-chain pairs tested. The results reveal that hGH site 1 behaves in a highly additive manner and suggest that shotgun scanning should be useful for assessing cooperative effects in other protein-protein interactions.  相似文献   

12.
13.
MS was used to characterize the 24 kDa human growth hormone (hGH) glycoprotein isoform and determine the locus of O‐linked oligosaccharide attachment, the oligosaccharide branching topology, and the monosaccharide sequence. MALDI‐TOF/MS and ESI‐MS/MS analyses of glycosylated 24 kDa hGH tryptic peptides showed that this hGH isoform is a product of the hGH normal gene. Analysis of the glycoprotein hydrolysate by high‐performance anion‐exchange chromatography with pulsed amperometric detection and HPLC with fluorescent detection for N‐acetyl neuraminic acid (NeuAc) yielded the oligosaccharide composition (NeuAc2, N‐acetyl galactosamine1, Gal1). After β‐elimination to release the oligosaccharide from glycosylated 24 kDa hGH, collision‐induced dissociation of tryptic glycopeptide T6 indicated that there had been an O‐linked oligosaccharide attached to Thr‐60. The sequence and branching structure of the oligosaccharide were determined by ESI‐MS/MS analysis of tryptic glycopeptide T6. The mucin‐like O‐oligosaccharide sequence linked to Thr‐60 begins with N‐acetyl galactosamine and branches in a bifurcated topology with one appendage consisting of galactose followed by NeuAc and the other consisting of a single NeuAc. The oligosaccharide moiety lies in the high‐affinity binding site 1 structural epitope of hGH that interfaces with both the growth hormone and the prolactin receptors and is predicted to sterically affect receptor interactions and alter the biological actions of hGH.  相似文献   

14.
Abstract

The specific binding of 125I-oPRL to microsomal fractions from the adrenal gland, ovary and kidney of the lactating cow was significantly lower than binding of iodinated hGH. In addition, the ability of oPRL to compete with iodinated hGH as compared to hGH, was 50-fold lower in the adrenal gland 35-fold lower in the ovary and 18-fold lower in the kidney. These results are similar to those obtained in the mammary gland and liver, whereas the ability of oPRL to compete with iodinated hGH was 90-fold lower, as compared to hGH. In the kidney the difference between the binding of iodinated hGH and iodinated oPRL was smaller. Results obtained with a solubilized kidney microsomal fraction also show a slightly higher affinity for oPRL than in other tissues. Thus the phenomena of differential affinities of oPRL and hGH to lactogenic hormone binding sites, characterizes most lactogenic hormone target tissues in the lactating cow. The distribution of these sites in different parts of the tissues was also studied. In the adrenal gland, the binding capacity in the cortex was 8-fold higher than in the medulla. In the ovary most of the binding sites were found in the corpus luteum, while in the kidney the binding capacity was higher in the cortex as compared to the medulla.  相似文献   

15.
Human growth hormone (hGH) binds lactogenic or somatotrophic receptors, creating active heterotrimeric complexes. Comparison of hGH structures, either free or bound to a single lactogenic or somatotrophic receptor, shows binding is associated with structural changes. Changes in hGH structure are unique when binding either lactogenic or somatotrophic receptors and they influence the spatial arrangement of residues constituting the second receptor-binding site. Using site-directed mutagenesis, we identified a contiguous set of largely hydrophobic residues that forms a motif communicating between the two receptor-binding sites of hGH. The residues are external to the receptor-binding epitopes and were identified when their mutation reduced site 2 function without changing site 1 function. The motif includes Phe44, Leu93, Tyr160, Leu163, and Tyr164, located in two hydrophobic clusters between the receptor-binding sites. Their mutation to Glu disrupts hydrophobic interactions and reduces lactogenic activity between 4.7- and 85-fold with little effect on somatotrophic activity or spectroscopic properties. These differential effects indicate that loss of lactogenic activity is not a result of global mis-folding. We propose the loss of lactogenic activity results from disruption of specific hydrophobic clusters that disables the site 1 binding-induced structuring of the second receptor-binding site.  相似文献   

16.
A high-affinity variant of human growth hormone (hGH(v)) contains 15 mutations within site 1 and binds to the hGH receptor (hGHR) approximately 400-fold tighter than does wild-type (wt) hGH (hGH(wt)). We used shotgun scanning combinatorial mutagenesis to dissect the energetic contributions of individual residues within the hGH(v) binding epitope and placed them in context with previously determined structural information. In all, the effects of alanine substitutions were determined for 35 hGH(v) residues that are directly contained in or closely border the binding interface. We found that the distribution of binding energy in the functional epitope of hGH(v) differs significantly from that of hGH(wt). The residues that contributed the majority of the binding energy in the wt interaction (the so-called binding "hot spot") remain important, but their contributions are attenuated in the hGH(v) interaction, and additional binding energy is acquired from residues on the periphery of the original hotspot. Many interactions that inhibited the binding of hGH(wt) are replaced by interactions that make positive contributions to the binding of hGH(v). These changes produce an expanded and diffused hot spot in which improved affinity results from numerous small contributions distributed broadly over the interface. The mutagenesis results are consistent with previous structural studies, which revealed widespread structural differences between the wt and variant hormone-receptor interfaces. Thus, it appears that the improved binding affinity of hGH(v) site 1 was not achieved through minor adjustments to the wt interface, but rather, results from a wholesale reconfiguration of many of the original binding elements.  相似文献   

17.
Voltage-gated Ca2+ channels (VGCCs) are recognized for their superb ability for the preferred passage of Ca2+ over any other more abundant cation present in the physiological saline. Most of our knowledge about the mechanisms of selective Ca2+ permeation through VGCCs was derived from the studies on native and recombinant L-type representatives. However, the specifics of the selectivity and permeation of known recombinant T-type Ca2+-channel α1 subunits, Cav3.1, Cav3.2 and Cav3.3, are still poorly defined. In the present study we provide comparative analysis of the selectivity and permeation Cav3.1, Cav3.2, and Cav3.3 functionally expressed in Xenopus oocytes. Our data show that all Cav3 channels select Ca2+ over Na+ by affinity. Cav3.1 and Cav3.2 discriminate Ca2+, Sr2+ and Ba2+ based on the ion's effects on the open channel probability, whilst Cav3.3 discriminates based on the ion's intrapore binding affinity. All Cav3s were characterized by much smaller difference in the KD values for Na+ current blockade by Ca2+ (KD1 ∼ 6 μM) and for Ca2+ current saturation (KD2 ∼ 2 mM) as compared to L-type channels. This enabled them to carry notable mixed Na+/Ca2+ current at close to physiological Ca2+ concentrations, which was the strongest for Cav3.3, smaller for Cav3.2 and the smallest for Cav3.1. In addition to intrapore Ca2+ binding site(s) Cav3.2, but not Cav3.1 and Cav3.3, is likely to possess an extracellular Ca2+ binding site that controls channel permeation. Our results provide novel functional tests for identifying subunits responsible for T-type Ca2+ current in native cells.  相似文献   

18.
The robust and tissue-specific activation of the human growth hormone (hGH) gene cluster in the pituitary and placenta constitutes an informative model for analysis of gene regulation. The five-gene hGH cluster is regulated by two partially overlapping sets of DNase I hypersensitive sites (HSs) that constitute the pituitary (HSI, II, III and V) and placental (HSIII, IV, and V) locus control regions (LCRs). The single placenta-specific LCR component, HSIV, is located at −30 kb to the cluster. Here we generate a series of hGH/BAC transgenes specifically modified to identify structural features of the hGH locus required for its appropriate placental expression. We find that placental specificity is dependent on the overall multigene configuration of the cluster whereas the distance between the cluster and its LCR impacts the level of placental expression. We further observe that a major function of the placental hGH LCR is to insulate the transgene locus from site-of-integration effects. This insulation activity is linked to placenta-specific occupancy of the chromatin architectural protein, CTCF, at HSIV. These data reveal a remarkable combination of structural configurations and regulatory determinants that must work in concert to insure robust and tightly controlled expression from a complex multigene locus.  相似文献   

19.
Insulin-like peptide 3 (INSL3) is a reproduction-related peptide hormone belonging to the insulin/relaxin superfamily, which mediates testicular descent in the male fetus, suppresses male germ cell apoptosis and promotes oocyte maturation in adults by activating the relaxin family peptide receptor 2 (RXFP2). To establish an ultrasensitive receptor-binding assay for INSL3−RXFP2 interaction studies, in the present work we labeled a recombinant INSL3 peptide with a newly developed nanoluciferase (NanoLuc) reporter through a convenient chemical conjugation approach, including the introduction of an active disulfide bond to INSL3 by chemical modification and engineering of a 6× His-Cys-NanoLuc carrying a unique exposed cysteine at the N-terminus. The bioluminescent NanoLuc-conjugated INSL3 retained high binding affinity with the target receptor RXFP2 (Kd = 2.0 ± 0.1 nM, n = 3) and was able to sensitively monitor the receptor-binding of a variety of ligands, representing a novel ultrasensitive tracer for non-radioactive receptor-binding assays. Our present chemical conjugation approach could readily be adapted for conjugation of NanoLuc with other proteins, even other macrobiomolecules, for various highly sensitive bioluminescent assays.  相似文献   

20.
A pET based expression system for the production of recombinant human growth hormone (hGH) directed to the Escherichia coli periplasmic space was developed. The pET22b plasmid was used as a template for creating vectors that encode hGH fused to either a pelB or ompA secretion signal under control of the strong bacteriophage T7 promoter. The pelB- and ompA-hGH constructs expressed in BL21 (λDE3)-RIPL E. coli are secreted into the periplasm which facilitates isolation of soluble hGH by selective disruption of the outer membrane. A carboxy-terminal poly-histidine tag enabled purification by Ni2+ affinity chromatography with an average yield of 1.4 mg/L culture of purified hGH, independent of secretion signal. Purified pelB- and ompA-hGH are monomeric based on size exclusion chromatography with an intact mass corresponding to mature hGH indicating proper cleavage of the signal peptide and folding in the periplasm. Both pelB- and ompA-hGH bind the hGH receptor with high affinity and potently stimulate Nb2 cell growth. These results demonstrate that the pET expression system is suitable for the rapid and simple isolation of bioactive, soluble hGH from E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号