首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 868 毫秒
1.
Aminoacyl-tRNAs (aa-tRNAs) are delivered to the ribosome as part of the ternary complex of aa-tRNA, elongation factor Tu (EF-Tu) and GTP. Here, we present a cryo-electron microscopy (cryo-EM) study, at a resolution of approximately 9 A, showing that during the incorporation of the aa-tRNA into the 70S ribosome of Escherichia coli, the flexibility of aa-tRNA allows the initial codon recognition and its accommodation into the ribosomal A site. In addition, a conformational change observed in the GTPase-associated center (GAC) of the ribosomal 50S subunit may provide the mechanism by which the ribosome promotes a relative movement of the aa-tRNA with respect to EF-Tu. This relative rearrangement seems to facilitate codon recognition by the incoming aa-tRNA, and to provide the codon-anticodon recognition-dependent signal for the GTPase activity of EF-Tu. From these new findings we propose a mechanism that can explain the sequence of events during the decoding of mRNA on the ribosome.  相似文献   

2.
Ribosome-stimulated hydrolysis of guanosine-5'-triphosphate (GTP) by guanosine triphosphatase (GTPase) translation factors drives protein synthesis by the ribosome. Allosteric coupling of GTP hydrolysis by elongation factor Tu (EF-Tu) at the ribosomal GTPase center to messenger RNA (mRNA) codon:aminoacyl-transfer RNA (aa-tRNA) anticodon recognition at the ribosomal decoding site is essential for accurate and rapid aa-tRNA selection. Here we use single-molecule methods to investigate the mechanism of action of the antibiotic thiostrepton and show that the GTPase center of the ribosome has at least two discrete functions during aa-tRNA selection: binding of EF-Tu(GTP) and stimulation of GTP hydrolysis by the factor. We separate these two functions of the GTPase center and assign each to distinct, conserved structural regions of the ribosome. The data provide a specific model for the coupling between the decoding site and the GTPase center during aa-tRNA selection as well as a general mechanistic model for ribosome-stimulated GTP hydrolysis by GTPase translation factors.  相似文献   

3.
During decoding, the ribosome selects the correct (cognate) aminoacyl-tRNA (aa-tRNA) from a large pool of incorrect aa-tRNAs through a two-stage mechanism. In the initial selection stage, aa-tRNA is delivered to the ribosome as part of a ternary complex with elongation factor EF-Tu and GTP. Interactions between codon and anticodon lead to activation of the GTPase domain of EF-Tu and GTP hydrolysis. Then, in the proofreading stage, aa-tRNA is released from EF-Tu and either moves fully into the A/A site (a step termed “accommodation”) or dissociates from the ribosome. Cognate codon-anticodon pairing not only stabilizes aa-tRNA at both stages of decoding but also stimulates GTP hydrolysis and accommodation, allowing the process to be both accurate and fast. In previous work, we isolated a number of ribosomal ambiguity (ram) mutations in 16S rRNA, implicating particular regions of the ribosome in the mechanism of decoding. Here, we analyze a representative subset of these mutations with respect to initial selection, proofreading, RF2-dependent termination, and overall miscoding in various contexts. We find that mutations that disrupt inter-subunit bridge B8 increase miscoding in a general way, causing defects in both initial selection and proofreading. Mutations in or near the A site behave differently, increasing miscoding in a codon-anticodon-dependent manner. These latter mutations may create spurious favorable interactions in the A site for certain near-cognate aa-tRNAs, providing an explanation for their context-dependent phenotypes in the cell.  相似文献   

4.
Structural dynamics of ribosomal RNA during decoding on the ribosome   总被引:5,自引:0,他引:5  
Decoding is a multistep process by which the ribosome accurately selects aminoacyl-tRNA (aa-tRNA) that matches the mRNA codon in the A site. The correct geometry of the codon-anticodon complex is monitored by the ribosome, resulting in conformational changes in the decoding center of the small (30S) ribosomal subunit by an induced-fit mechanism. The recognition of aa-tRNA is modulated by changes of the ribosome conformation in regions other than the decoding center that may either affect the architecture of the latter or alter the communication of the 30S subunit with the large (50S) subunit where the GTPase and peptidyl transferase centers are located. Correct codon-anticodon complex formation greatly accelerates the rates of GTP hydrolysis and peptide bond formation, indicating the importance of crosstalk between the subunits and the role of the 50S subunit in aa-tRNA selection. In the present review, recent results of the ribosome crystallography, cryoelectron microscopy (cryo-EM), genetics, rapid kinetics and biochemical approaches are reviewed which show that the dynamics of the structure of ribosomal RNA (rRNA) play a crucial role in decoding.  相似文献   

5.
In bacterial polypeptide synthesis aminoacyl-tRNA (aa-tRNA) bound to elongation factor Tu (EF-Tu) and GTP is part of a crucial intermediate ribonucleoprotein complex involved in the decoding of messenger RNA. The conformation and topology as well as the affinity of the macromolecules in this ternary aa-tRNA X EF-Tu X GTP complex are of fundamental importance for the nature of the interaction of the complex with the ribosome. The structural elements of aa-tRNA required for interaction with EF-Tu and GTP and the resulting functional implications are presented here.  相似文献   

6.
Aminoacyl-tRNA (aa-tRNA) is delivered to the ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. The stepwise movement of aa-tRNA from EF-Tu into the ribosomal A site entails a number of intermediates. The ribosome recognizes aa-tRNA through shape discrimination of the codon-anticodon duplex and regulates the rates of GTP hydrolysis by EF-Tu and aa-tRNA accommodation in the A site by an induced fit mechanism. Recent results of kinetic measurements, ribosome crystallography, single molecule FRET measurements, and cryo-electron microscopy suggest the mechanism of tRNA recognition and selection.  相似文献   

7.
Hunter SE  Spremulli LL 《Biochemistry》2004,43(22):6917-6927
Elongation factor Tu (EF-Tu) is responsible for the delivery of the aminoacyl-tRNAs (aa-tRNA) to the ribosome during protein synthesis. The primary sequence of domain II of EF-Tu is highly conserved. However, several residues thought to be important for aa-tRNA binding in this domain are not conserved between the mammalian mitochondrial and bacterial factors. One of these residues is located at position 290 (Escherichia coli numbering). Residue 290 is Gln in most of the prokaryotic factors but is conserved as Leu (L338) in the mammalian mitochondrial factors. This residue is in a loop contacting the switch II region of domain I in the GTP-bound structure. It also helps to form the binding pocket for the 5' end of the aa-tRNA in the ternary complex. In the present work, Leu338 was mutated to Gln (L338Q) in EF-Tu(mt). The complementary mutation was created at the equivalent position in E. coli EF-Tu (Q290L). EF-Tu(mt) L338Q functions as effectively as wild-type EF-Tu(mt) in poly(U)-directed polymerization with both prokaryotic and mitochondrial substrates and in ternary complex formation assays with E. coli aa-tRNA. However, the L338Q mitochondrial variant has a reduced affinity for mitochondrial Phe-tRNA(Phe). E. coli EF-Tu Q290L is more active in poly(U)-directed polymerization with both mitochondrial and prokaryotic substrates and has a higher GTPase activity in both the absence and presence of ribosomes. Surprisingly, while E. coli EF-Tu Q290L is more active in polymerization with mitochondrial Phe-tRNA(Phe), this variant has low activity in the formation of a stable ternary complex with mitochondrial aa-tRNA.  相似文献   

8.
Aminoacyl-tRNA (aa-tRNA), in a ternary complex with elongation factor-Tu and GTP, enters the aminoacyl (A) site of the ribosome via a multi-step, mRNA codon-dependent mechanism. This process gives rise to the preferential selection of cognate aa-tRNAs for each mRNA codon and, consequently, the fidelity of gene expression. The ribosome actively facilitates this process by recognizing structural features of the correct substrate, initiated in its decoding site, to accelerate the rates of elongation factor-Tu-catalyzed GTP hydrolysis and ribosome-catalyzed peptide bond formation. Here, the order and timing of conformational events underpinning the aa-tRNA selection process were investigated from multiple structural perspectives using single-molecule fluorescence resonance energy transfer. The time resolution of these measurements was extended to 2.5 and 10 ms, a 10- to 50-fold improvement over previous studies. The data obtained reveal that aa-tRNA undergoes fast conformational sampling within the A site, both before and after GTP hydrolysis. This suggests that the alignment of aa-tRNA with respect to structural elements required for irreversible GTP hydrolysis and peptide bond formation plays a key role in the fidelity mechanism. These observations provide direct evidence that the selection process is governed by motions of aa-tRNA within the A site, adding new insights into the physical framework that helps explain how the rates of GTP hydrolysis and peptide bond formation are controlled by the mRNA codon and other fidelity determinants within the system.  相似文献   

9.
T Pape  W Wintermeyer    M Rodnina 《The EMBO journal》1999,18(13):3800-3807
The fidelity of aminoacyl-tRNA (aa-tRNA) selection by the bacterial ribosome is determined by initial selection before and proofreading after GTP hydrolysis by elongation factor Tu. Here we report the rate constants of A-site binding of a near-cognate aa-tRNA. The comparison with the data for cognate aa-tRNA reveals an additional, important contribution to aa-tRNA discrimination of conformational coupling by induced fit. It is found that two rearrangement steps that limit the chemical reactions of A-site binding, i.e. GTPase activation (preceding GTP hydrolysis) and A-site accommodation (preceding peptide bond formation), are substantially faster for cognate than for near-cognate aa-tRNA. This suggests an induced-fit mechanism of aa-tRNA discrimination on the ribosome that operates in both initial selection and proofreading. It is proposed that the cognate codon-anticodon interaction, more efficiently than the near-cognate one, induces a particular conformation of the decoding center of 16S rRNA, which in turn promotes GTPase activation and A-site accommodation of aa-tRNA, thereby accelerating the chemical steps. As kinetically favored incorporation of the correct substrate has also been suggested for DNA and RNA polymerases, the present findings indicate that induced fit may contribute to the fidelity of template-programed systems in general.  相似文献   

10.
The structural basis of the tRNA selection process is investigated by cryo-electron microscopy of ribosomes programmed with UGA codons and incubated with ternary complex (TC) containing the near-cognate Trp-tRNA(Trp) in the presence of kirromycin. Going through more than 350 000 images and employing image classification procedures, we find ~8% in which the TC is bound to the ribosome. The reconstructed 3D map provides a means to characterize the arrangement of the near-cognate aa-tRNA with respect to elongation factor Tu (EF-Tu) and the ribosome, as well as the domain movements of the ribosome. One of the interesting findings is that near-cognate tRNA's acceptor stem region is flexible and CCA end becomes disordered. The data bring direct structural insights into the induced-fit mechanism of decoding by the ribosome, as the analysis of the interactions between small and large ribosomal subunit, aa-tRNA and EF-Tu and comparison with the cognate case (UGG codon) offers clues on how the conformational signals conveyed to the GTPase differ in the two cases.  相似文献   

11.
Ribosomes take an active part in aminoacyl-tRNA selection by distinguishing correct and incorrect codon-anticodon pairs. Correct codon-anticodon complexes are recognized by a network of ribosome contacts that are specific for each position of the codon-anticodon duplex and involve A-minor RNA interactions. Here, we show by kinetic analysis that single mismatches at any position of the codon-anticodon complex result in slower forward reactions and a uniformly 1000-fold faster dissociation of the tRNA from the ribosome. This suggests that high-fidelity tRNA selection is achieved by a conformational switch of the decoding site between accepting and rejecting modes, regardless of the thermodynamic stability of the respective codon-anticodon complexes or their docking partners at the decoding site. The forward reactions on mismatched codons were particularly sensitive to the disruption of the A-minor interactions with 16S rRNA and determined the variations in the misreading efficiency of near-cognate codons.  相似文献   

12.
The interaction of the Escherichia coli elongation factor Tu guanosine tetraphosphate complex (EF-Tu ppGpp) with aminoacyl-tRNAs(aa-tRNA) was reinvestigated by gel filtration and hydrolysis protection experiments. These experiments show that EF-Tu X ppGpp like EF-Tu X GDP (Pingoud, A., Block, W., Wittinghofer, A., Wolf, H. & Fischer, E. (1982) J. Biol. Chem. 257, 11261-11267) forms a fairly stable complex with Phe-tRNAPhe, KAss being 0.6 X 10(5) M-1 at 25 degrees C. The binding of the EF-Tu X ppGpp X aa-tRNA complex to programmed ribosomes was investigated by a centrifugation technique. It is shown that this complex is bound codon-specific with KAss = 3 X 10(7) M-1 at 0 degrees C and that it stimulates peptidyl transfer. A numerical estimation of the intracellular concentration of EF-Tu X GTP X aa-tRNA and EF-Tu X ppGpp X aa-tRNA during normal growth and under the stringent response indicates that ppGpp accumulation does affect the EF-Tu X GTP X aa-tRNA concentration but does not lead to major depletion of this pool. Furthermore, due to the higher affinity of EF-Tu X GTP to aa-tRNA and of the ternary complex EF-Tu X GTP X aa-tRNA to the ribosome, EF-Tu X ppGpp X aa-tRNA binding to the ribosome is not significant. According to our measurements and calculations, therefore, a direct participation of EF-Tu in slowing down the rate of protein biosynthesis and improving its accuracy during amino acid starvation is not obvious.  相似文献   

13.
The mRNA codon in the ribosomal A-site is recognized by aminoacyl-tRNA (aa-tRNA) in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here we report the 13 A resolution three-dimensional reconstruction determined by cryo-electron microscopy of the kirromycin-stalled codon-recognition complex. The structure of the ternary complex is distorted by binding of the tRNA anticodon arm in the decoding center. The aa-tRNA interacts with 16S rRNA, helix 69 of 23S rRNA and proteins S12 and L11, while the sarcin-ricin loop of 23S rRNA contacts domain 1 of EF-Tu near the nucleotide-binding pocket. These results provide a detailed snapshot view of an important functional state of the ribosome and suggest mechanisms of decoding and GTPase activation.  相似文献   

14.
Speed and accuracy of protein synthesis are fundamental parameters for the fitness of living cells, the quality control of translation, and the evolution of ribosomes. The ribosome developed complex mechanisms that allow for a uniform recognition and selection of any cognate aminoacyl-tRNA (aa-tRNA) and discrimination against any near-cognate aa-tRNA, regardless of the nature or position of the mismatch. This review describes the principles of the selection-kinetic partitioning and induced fit-and discusses the relationship between speed and accuracy of decoding, with a focus on bacterial translation. The translational machinery apparently has evolved towards high speed of translation at the cost of fidelity.  相似文献   

15.
Aminoacyl-tRNAs (aa-tRNAs) are selected by the ribosome through a kinetically controlled induced fit mechanism. Cognate codon recognition induces a conformational change in the decoding center and a domain closure of the 30S subunit. We studied how these global structural rearrangements are related to tRNA discrimination by using streptomycin to restrict the conformational flexibility of the 30S subunit. The antibiotic stabilized aa-tRNA on the ribosome both with a cognate and with a near-cognate codon in the A site. Streptomycin altered the rates of GTP hydrolysis by elongation factor Tu (EF-Tu) on cognate and near-cognate codons, resulting in almost identical rates of GTP hydrolysis and virtually complete loss of selectivity. These results indicate that movements within the 30S subunit at the streptomycin-binding site are essential for the coupling between base pair recognition and GTP hydrolysis, thus modulating the fidelity of aa-tRNA selection.  相似文献   

16.
Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) is a good analog of GTP in the reactions leading to the formation of a peptide bond in protein biosynthesis. It forms binary and ternary complexes with elongation factor Tu (EF-Tu), and with EF-Tu and aminoacyl-tRNA (aa-tRNA). In addition, it stimulates aa-tRNA binding to ribosomes. Although GTP gamma S hydrolysis is more than three orders of magnitude slower than GTP hydrolysis, both reactions are dependent on the formation of a noncovalent complex (RS X TC) between mRNA-programmed ribosomes and ternary complex, and the complexes resulting from that hydrolysis are intermediates in peptide formation. The rate of dissociation of the ribosome X EF-Tu X GTP gamma S X aa-tRNA complex was determined from the rate of labeled peptide formation in the presence of an unlabeled ternary complex chase. This rate (2.2 X 10(-3) s-1) is similar to that determined previously (Thompson, R.C., and Karim, A.M. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 4922-4926) from the progress of GTP gamma S hydrolysis. The effects of temperature and polycation concentration on this rate constant and that for GTP gamma S hydrolysis are reported. The rate constants measured are consistent with a kinetic rather than thermodynamic limit on the accuracy of the aa-tRNA selection in vivo.  相似文献   

17.
Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differs from the corresponding prokaryotic factors in having a much lower affinity for guanine nucleotides. To further understand the EF-Tu(mt) subcycle, the dissociation constants for the release of aa-tRNA from the ternary complex (K(tRNA)) and for the dissociation of the EF-Tu.Ts(mt) complex (K(Ts)) were investigated. The equilibrium dissociation constant for the ternary complex was 18 +/- 4 nm, which is close to that observed in the prokaryotic system. The kinetic dissociation rate constant for the ternary complex was 7.3 x 10(-)(4) s(-)(1), which is essentially equivalent to that observed for the ternary complex in Escherichia coli. The binding of EF-Tu(mt) to EF-Ts(mt) is mutually exclusive with the formation of the ternary complex. K(Ts) was determined by quantifying the effects of increasing concentrations of EF-Ts(mt) on the amount of ternary complex formed with EF-Tu(mt). The value obtained for K(Ts) (5.5 +/- 1.3 nm) is comparable to the value of K(tRNA).  相似文献   

18.
During protein synthesis dictated by the codon sequence of messenger RNA, the ribosome selects aminoacyl-tRNA (aa-tRNA) with high accuracy, the exact mechanism of which remains elusive. By using a single-molecule fluorescence resonance energy transfer method coupled with fluorescence emission anisotropy, we provide evidence of random thermal motion of tRNAs within the ribosome in nanosecond timescale that we refer to as fluctuations. Our results indicate that cognate aa-tRNA fluctuates less frequently than near-cognate. This is counterintuitive because cognate aa-tRNA is expected to fluctuate more frequently to reach the ribosomal A-site faster than near-cognate. In addition, cognate aa-tRNA occupies the same position in the ribosome as near-cognate. These results argue for a mechanism which guides cognate aa-tRNA more accurately toward the A-site as compared to near-cognate. We suggest that a basis for this mechanism is the induced fit of the 30S subunit upon cognate aa-tRNA binding. Our single-molecule fluorescence resonance energy transfer time traces also point to a mechanistic model for GTP hydrolysis on elongation factor Tu mediated by aa-tRNA.  相似文献   

19.
Using single-molecule methods we observed the stepwise movement of aminoacyl-tRNA (aa-tRNA) into the ribosome during selection and kinetic proofreading using single-molecule fluorescence resonance energy transfer (smFRET). Intermediate states in the pathway of tRNA delivery were observed using antibiotics and nonhydrolyzable GTP analogs. We identified three unambiguous FRET states corresponding to initial codon recognition, GTPase-activated and fully accommodated states. The antibiotic tetracycline blocks progression of aa-tRNA from the initial codon recognition state, whereas cleavage of the sarcin-ricin loop impedes progression from the GTPase-activated state. Our data support a model in which ribosomal recognition of correct codon-anticodon pairs drives rotational movement of the incoming complex of EF-Tu-GTP-aa-tRNA toward peptidyl-tRNA during selection on the ribosome. We propose a mechanistic model of initial selection and proofreading.  相似文献   

20.
The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP   总被引:7,自引:0,他引:7  
Escherichia coli elongation factor (EF-Tu) binds aminoacyl-tRNAs (aa-tRNA) not only in the presence of GTP but also in the presence of GDP. Complex formation leads to a protection of the aa-tRNA against nonenzymatic deacylation and digestion by pancreatic ribonuclease, as well as to a protection of EF-Tu against proteolysis by trypsin. The equilibrium constant for the binding of Phe-tRNAPheyeast for example to EF-Tu.GDP has been determined to be 0.7 X 10(5) M-1 which is 2 orders of magnitude lower than the equilibrium constant for Phe-tRNAPheyeast binding to EF-Tu.GTP. In the presence of kirromycin, aminoacyl-tRNA binding to EF-Tu.GDP is not affected as much: Phe-tRNAPheyeast is bound with an equilibrium constant of 3 X 10(5) M-1. While there is also a measurable interaction between EF-Tu.GTP and tRNA, such an interaction cannot be detected with EF-Tu.GDP and tRNA, not even at millimolar concentrations. A so far undetected complex formation between aminoacyl-tRNA and EF-Tu.GTP in the presence of pulvomycin, however, could be detected. The results are discussed in terms of the structural requirements of ternary complex formation and in the light of proofreading schemes involving A-site binding on the E. coli ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号