首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Luminescence resonance energy transfer measurements in myosin.   总被引:2,自引:0,他引:2       下载免费PDF全文
Myosin is thought to generate force by a rotation between the relative orientations of two domains. Direct measurements of distances between the domains could potentially confirm and quantify these conformational changes, but efforts have been hampered by the large distances involved. Here we show that luminescence resonance energy transfer (LRET), which uses a luminescent lanthanide as the energy-transfer donor, is capable of measuring these long distances. Specifically, we measure distances between the catalytic domain (Cys707) and regulatory light chain domain (Cys108) of the myosin head. An energy transfer efficiency of 21.2 +/- 1.9% is measured in the myosin complex without nucleotide or actin, corresponding to a distance of 73 A, consistent with the crystal structure of Rayment et al. Upon binding to actin, the energy transfer efficiency decreases by 4.5 +/- 1.0%, indicating a conformational change in myosin that involves a relative rotation and/or translation of Cys707 relative to the light chain domain. Addition of ADP also alters the energy transfer efficiency, likely through a rotation of the probe attached to Cys707. These results demonstrate that LRET is capable of making accurate measurements on the relatively large actomyosin complex, and is capable of detecting conformational changes between the catalytic and light chain domains of myosin.  相似文献   

2.
beta helix proteins are characterized by a repetitive fold, in which the repeating unit is a beta-helical coil formed by three strand segments linked by three loop segments. Using a data set of left- and right-handed beta helix proteins, we have examined conformational features at equivalent positions in successive coils. This has provided insights into the conformational rules that the proteins employ to fold into beta helices. Left-handed beta helices attain their equilateral prism fold by incorporating "corners" with the conformational sequence P(II)-P(II)-alpha(L)-P(II), which imposes sequence restrictions, resulting in the first and third P(II) residues often being G and a small, uncharged residue (V, A, S, T, C), respectively. Right-handed beta helices feature mid-sized loops (4, 5, or 6 residues) of conserved conformation, but not of conserved sequence; they also display an alpha-helical residue at the C-terminal end of L2 loops. Backbone conformational parameters (phi,psi) that permit the formation of continuous, loopless beta helices (Perutz nanotubes) have also been investigated.  相似文献   

3.
Rhomboids represent an evolutionarily ancient protease family. Unlike most other proteases, they are polytopic membrane proteins and specialize in cleaving transmembrane protein substrates. The polar active site of rhomboid protease is embedded in the membrane and normally closed. For the bacterial rhomboid GlpG, it has been proposed that one of the transmembrane helices (S5) of the protease can rotate to open a lateral gate, enabling substrate to enter the protease from inside the membrane. Here, we studied the conformational change in GlpG by solving the cocrystal structure of the protease with a mechanism-based inhibitor. We also examined the lateral gating model by cross-linking S5 to a neighboring helix (S2). The crystal structure shows that inhibitor binding displaces a capping loop (L5) from the active site but causes only minor shifts in the transmembrane helices. Cross-linking S5 and S2, which not only restricts the lateral movement of S5 but also prevents substrate from passing between the two helices, does not hinder the ability of the protease to cleave a membrane protein substrate in detergent solution and in reconstituted membrane vesicles. Taken together, these data suggest that a large lateral movement of the S5 helix is not required for substrate access to the active site of rhomboid protease.  相似文献   

4.
A monomeric model for murine antiapoptotic protein Bcl-2 was constructed by comparative modeling with the software suite MPACK (EXDIS/DIAMOD/FANTOM) using human Bcl-xL as a template. The monomeric model shows that murine Bcl-2 is an all -helical protein with a central (helix 5) hydrophobic helix surrounded by amphipathic helices and an unstructured loop of 30 residues connecting helices 1 and 2. It has been previously shown that phosphorylation of Ser 70 located in this loop region regulates the anti-apoptotic activity of Bcl-2. Based on our current model, we propose that this phosphorylation may result in a conformational change that aids multimer formation. We constructed a model for the Bcl-2 homodimer based on the experimentally determined 3D structure of the Bcl-xL: Bad peptide complex. The model shows that it will require approximately a half turn in helix 2 to expose hydrophobic residues important for the formation of a multimer. Helices 5 and 6 of the monomeric subunit Bcl-2 have been proposed to form an ion-channel by associating with helices 5 and 6 of another monomeric subunit in the higher-order complex. In the multimeric model of Bcl-2, helices 5 and 6 of each subunit were placed distantly apart. From our model, we conclude that a global conformational change may be required to bring helices 5 and 6 together during ion-channel formation.Figure Hydrophobic interactions in the dimerization groove are shown. Helix 2' of monomer B interacts through residues V90, H91, L94, A97, G98, F101 and Y105 with the hydrophobic surface formed by residues in helices 3, 4, and 5 of the monomer A. Shown here is a lateral view of monomer A depicted in a surface model with hydrophobic regions in red. The backbone of the helix is shown using a neon representation in yellow and the interacting side chains are in blue.  相似文献   

5.
Apolipophorin III (apoLp-III) is an exchangeable apolipoprotein whose structure is represented as a bundle of five amphipathic alpha-helices. In order to study the properties of the helical domains of apolipophorin III, we designed and obtained five single-tryptophan mutants of Locusta migratoria apoLp-III. The proteins were studied by UV absorption spectroscopy, time-resolved and steady-state fluorescence spectroscopy, and circular dichroism. Fluorescence anisotropy, near-UV CD and solute fluorescence quenching studies indicate that the Trp residues in helices 1 (N-terminal) and 5 (C-terminal) have the highest conformational flexibility. These two residues also showed the highest degree of hydration. Trp residues in helices 3 and 4 display the lowest mobility, as assessed by fluorescence anisotropy and near UV CD. The Trp residue in helix 2 is protected from the solvent but shows high mobility. As inferred from the properties of the Trp residues, helices 1 and 5 appear to have the highest conformational flexibility. Helix 2 has an intermediate mobility, whereas helices 3 and 4 appear to constitute a highly ordered domain. From the configuration of the helices in the tertiary structure of the protein, we estimated the relative strength of the five interhelical interactions of apoLp-III. These interactions can be ordered according to their apparent stabilizing strengths as: helix 3-helix 4 > helix 2-helix 3 > helix 4-helix 1 approximately helix 2-helix 5 > helix 1-helix 5. A new model for the conformational change that is expected to occur upon binding of the apolipoprotein to lipid is proposed. This model is significantly different from the currently accepted model (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesemberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, M. (1991) Biochemistry 30, 603-608). The model presented here predicts that the relaxation of the tertiary structure and the concomitant exposure of the hydrophobic core take place through the disruption of the weak interhelical contacts between helices 1 and 5. To some extent, the weakness of the helix 1-helix 5 interaction would be due to the parallel arrangement of these helices.  相似文献   

6.
Luminescence Resonance Energy Transfer, or LRET, is a powerful technique used to measure distances between two sites in proteins within the distance range of 10-100 Å. By measuring the distances under various ligated conditions, conformational changes of the protein can be easily assessed. With LRET, a lanthanide, most often chelated terbium, is used as the donor fluorophore, affording advantages such as a longer donor-only emission lifetime, the flexibility to use multiple acceptor fluorophores, and the opportunity to detect sensitized acceptor emission as an easy way to measure energy transfer without the risk of also detecting donor-only signal. Here, we describe a method to use LRET on membrane proteins expressed and assayed on the surface of intact mammalian cells. We introduce a protease cleavage site between the LRET fluorophore pair. After obtaining the original LRET signal, cleavage at that site removes the specific LRET signal from the protein of interest allowing us to quantitatively subtract the background signal that remains after cleavage. This method allows for more physiologically relevant measurements to be made without the need for purification of protein.  相似文献   

7.
The conformational changes in the agonist binding domain of the glycine-binding GluN1 and glutamate-binding GluN2A subunits of the N-methyl D-aspartic acid receptor upon binding agonists of varying efficacy have been investigated by luminescence resonance energy transfer (LRET) measurements. The LRET-based distances indicate a cleft closure conformational change at the GluN1 subunit upon binding agonists; however, no significant changes in the cleft closure are observed between partial and full agonists. This is consistent with the previously reported crystal structures for the isolated agonist binding domain of this receptor. Additionally, the LRET-based distances show that the agonist binding domain of the glutamate-binding GluN2A subunit exhibits a graded cleft closure with the extent of cleft closure being proportional to the extent of activation, indicating that the mechanism of activation in this subunit is similar to that of the glutamate binding α-amino-5-methyl-3-hydroxy-4-isoxazole propionate and kainate subtypes of the ionotropic glutamate receptors.  相似文献   

8.
A new integrated approach including computer-assisted sperm analysis (CASA), viability staining and fertilization was used to study the quality of cryodiluents used in fish sperm cryopreservation. As an example the sperm quality of an African catfish, Clarias gariepinus (Burchell, 1822), was assessed by its fertilizing ability, motility and viability at day 0 (fresh), after 2 days' storage at 4 degreesC and after 2 days, 5 months and 10 months frozen at -196 degreesC using solutions containing dimethyl sulphoxide (DMSO) or glycerol as permeating cryoprotectants. Four of the best freezing solutions were used, namely, Steyn's extender (S1, S4) and Mounib's extender (M3, M4) associating 10% hen's egg yolk. Progressive sperm movement measured by CASA and expressed by the straight line velocity (VSL), the average path velocity (VAP) and the curvilinear velocity (VCL) was highly correlated with hatching rates obtained from fertilization using minimal sperm:egg ratios. After 2 days, the motility of spermatozoa frozen with DMSO and 10% egg yolk had deteriorated less than that of spermatozoa stored at 4 degreesC. Post-thaw hatching rates reflected the post-thaw sperm viability, which was cryodiluent dependent: 14.9+/-2.0% (S4), 17.0+/-4.2% (S1), 25.9+/-3.7% (M4) and 52.1+/-3.4% (M3) after 5 months of cryopreservation. The percent motility of 10-months-frozen spermatozoa was high in M3 (70.7+/-11.4%) and M4 (64.0+/-2.0%) cryoprotected sperm when measured between 5 and 20 sec after activation, but decreased rapidly to 24.3+/-8.3% (M3) and 23.0+/-9.0% (M4) between 21 and 35 sec after activation. Mounib's extender (M3, M4) provided the best cryoprotection to the spermatozoa for all post-thaw sperm quality measurements and at all freezing durations. Sperm motility was positively related to fertility. Our method will make it possible to develop even better extenders and cryoprotectants.  相似文献   

9.
Apolipoprotein (apo) E is thought to undergo conformational changes in the N-terminal helix bundle domain upon lipid binding, modulating its receptor binding activity. In this study, site-specific fluorescence labeling of the N-terminal (S94) and C-terminal (W264 or S290) helices in apoE4 by pyrene maleimide or acrylodan was employed to probe the conformational organization and lipid binding behavior of the N- and C-terminal domains. Guanidine denaturation experiments monitored by acrylodan fluorescence demonstrated the less organized, more solvent-exposed structure of the C-terminal helices compared to the N-terminal helix bundle. Pyrene excimer fluorescence together with gel filtration chromatography indicated that there are extensive intermolecular helix-helix contacts through the C-terminal helices of apoE4. Comparison of increases in pyrene fluorescence upon binding of pyrene-labeled apoE4 to egg phosphatidylcholine small unilamellar vesicles suggests a two-step lipid-binding process; apoE4 initially binds to a lipid surface through the C-terminal helices followed by the slower conformational reorganization of the N-terminal helix bundle domain. Consistent with this, fluorescence resonance energy transfer measurements from Trp residues to acrylodan attached at position 94 demonstrated that upon binding to the lipid surface, opening of the N-terminal helix bundle occurs at the same rate as the increase in pyrene fluorescence of the N-terminal domain. Such a two-step mechanism of lipid binding of apoE4 is likely to apply to mostly phospholipid-covered lipoproteins such as VLDL. However, monitoring pyrene fluorescence upon binding to HDL(3) suggests that not only apoE-lipid interactions but also protein-protein interactions are important for apoE4 binding to HDL(3).  相似文献   

10.
M A Peters  T A Walker  N R Pace 《Biochemistry》1982,21(10):2329-2335
Limited digestion of mouse 5.8S ribosomal RNA (rRNA) with RNase T2 generates 5'- and 3'-terminal "half-molecules". These fragments are capable of independently and specifically binding to 28S rRNA, so there exist at least two contacts in the 5.8S rRNA for the 28S rRNA. The dissociation constants for the 5.8S/28S, 5' 5.8S fragment/28S, and 3' 5.8S fragment/28S complexes are 9 x 10(-8) M, 6 x 10(-8) M, and 13 x 10(-8) M, respectively. Thus, each of the fragment binding sites contributes about equally to the overall binding energy of the 5.8S/28S rRNA complex, and the binding sites act independently, rather than cooperatively. The dissociation constants suggest that the 5.8S rRNA termini from short, irregular helices with 28S rRNA. Thermal denaturation data on complexes containing 28S rRNA and each of the half-molecules of 5.8S rRNA indicate that the 5'-terminal binding site(s) exist(s) in a single conformation while the 3'-terminal site exhibits two conformational alternatives. The functional significance of the different conformational states is presently indeterminate, but the possibility they may represent alternative forms of a conformational switch operative during ribosome function is discussed.  相似文献   

11.
Luminescence resonance energy transfer (LRET) offers many advantages for accurate measurements of distances between specific sites in living cells, but progress in developing a methodology for implementing this technique has been limited. We report here the design, expression, and characterization of a test protein for development of a LRET methodology. The protein, which we call DAL, contains the following domains (from the N-terminus): Escherichia coli dihydrofolate reductase (DHFR), the third and fourth ankyrin repeats of p16(INK4a), a lanthanide-binding tag (LBT), and a hexahistidine tag. LBT binds Tb(3+) with a submicromolar dissociation constant. LRET was measured from the Tb(3+) site on LBT to transition metals bound to the hexa-His tag and to fluorescein methotrexate bound to DHFR. The measured distances were consistent with a molecular model constructed from the known crystal structures of the constituent domains of DAL. The results indicate that the two C-terminal ankyrin domains of p16(INK4a) are stably folded when combined with other protein domains. We found that Tb(3+) binds to DAL in the cytoplasm of live E. coli cells, and thus, DAL is useful as an indicator for studies of metal transport. We also used DAL to measure LRET from Tb(3+) to Cu(2+) in the cytoplasm of live E. coli cells. The rates of Tb(3+) and Cu(2+) transport were not affected by a proton uncoupler or an ATP synthase inhibitor. Reversal of the membrane potential had a small inhibitory effect, and removal of lipopolysaccharide had a small accelerating effect on transport. Changing the external pH from 7 to 5 strongly inhibited the Tb(3+) signal, suggesting that the Tb(3+)-LBT interaction is useful as a cytoplasmic pH indicator in the range of approximately pH 5-6.  相似文献   

12.
Potassium channels fluctuate between closed and open states. The detailed mechanism of the conformational changes opening the intracellular pore in the K+ channel from Streptomyces lividans (KcsA) is unknown. Applying Monte Carlo normal mode following, we find that gating involves rotation and unwinding of the TM2 bundle, lateral movement of the TM2 helices away from the channel axis, and disappearance of the TM2 bundle. The open-state conformation of KcsA exhibits a very wide inner vestibule, with a radius approximately 5-7 A and inner helices bent at the A98-G99 hinge. Computed conformational changes demonstrate that spin labeling and X-ray experiments illuminate different stages in gating: transition begins with clockwise rotation of the TM2 helices ending at a final state with the TM2 bend hinged near residues A98-G99. The concordance between the computational and experimental results provides atomic-level insights into the structural rearrangements of the channel's inner pore.  相似文献   

13.
Closing in on the resting state of the Shaker K(+) channel   总被引:4,自引:0,他引:4  
Membrane depolarization causes voltage-gated ion channels to transition from a resting/closed conformation to an activated/open conformation. We used voltage-clamp fluorometry to measure protein motion at specific regions of the Shaker Kv channel. This enabled us to construct new structural models of the resting/closed and activated/open states based on the Kv1.2 crystal structure using the Rosetta-Membrane method and molecular dynamics simulations. Our models account for the measured gating charge displacement and suggest a molecular mechanism of activation in which the primary voltage sensors, S4s, rotate by approximately 180 degrees as they move "outward" by 6-8 A. A subsequent tilting motion of the S4s and the pore domain helices, S5s, of all four subunits induces a concerted movement of the channel's S4-S5 linkers and S6 helices, allowing ion conduction. Our models are compatible with a wide body of data and resolve apparent contradictions that previously led to several distinct models of voltage sensing.  相似文献   

14.
A small (28 g) mechanical accelerometer has been tested by subjecting it to controlled bench tests consisting of repetitive vertical oscillations on two designs of test rig. The accelerometer's 3-digit display provided a cumulated score with a maximum of 99.9 units. This score was compared with an independent count of the imposed oscillations and found to be linear with time (r = 0.996) and reproducible on retest (coefficient of variation = +/- 1.5%). The sensitivity ranged from 6.2 to 7.4 units/10,000 oscillations. The response was related to the maximal applied acceleration (calculated from the amplitude and frequency of the oscillations on the assumption that they were sinusoidal) and independent of the amplitude and frequency used. The threshold maximal acceleration was less than 2 m s-2 and the response had reached a plateau at 4 m s-2. During field studies the accelerometer was firmly attached over the hip in a waistband where it responded to the vertical accelerations produced by walking. When compared with an independent count of footsteps from a heel-mounted resistance pad the accelerometer score (after calibration) was not significantly different. The mean difference was (0.29 +/- 0.67, S.D.) 10(3) "steps" in a younger group (n = 8, mean age 39 years) and (0.46 +/- 1.08, S.D.) 10(3) "steps" in an older group of women (n = 6, mean age 65 years). Scores of around 10 X 10(3) "steps" can be expected in a day in moderately active young subjects and 40 X 10(3) "steps" in a week in the elderly. Simultaneously recorded scores from both right and left hips wee not significantly different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
S100A1 is an EF-hand-containing Ca(2+)-binding protein that undergoes a conformational change upon binding calcium as is necessary to interact with protein targets and initiate a biological response. To better understand how calcium influences the structure and function of S100A1, the three-dimensional structure of calcium-bound S100A1 was determined by multidimensional NMR spectroscopy and compared to the previously determined structure of apo. In total, 3354 nuclear Overhauser effect-derived distance constraints, 240 dihedral constraints, 160 hydrogen bond constraints, and 362 residual dipolar coupling restraints derived from a series of two-dimensional, three-dimensional, and four-dimensional NMR experiments were used in its structure determination (>21 constraints per residue). As with other dimeric S100 proteins, S100A1 is a symmetric homodimer with helices 1, 1', 4, and 4' associating into an X-type four-helix bundle at the dimer interface. Within each subunit there are four alpha-helices and a short antiparallel beta-sheet typical of two helix-loop-helix EF-hand calcium-binding domains. The addition of calcium did not change the interhelical angle of helices 1 and 2 in the pseudo EF-hand significantly; however, there was a large reorientation of helix 3 in the typical EF-hand. The large conformational change exposes a hydrophobic cleft, defined by residues in the hinge region, the C terminus, and regions of helix 3, which are important for the interaction between S100A1 and a peptide (TRTK-12) derived from the actin-capping protein CapZ.  相似文献   

16.
The three-dimensional solution structure of reduced (dithiol) thioredoxin from Escherichia coli has been determined with distance and dihedral angle constraints obtained from 1H NMR spectroscopy. Reduced thioredoxin has a well-defined global fold consisting of a central five-strand beta-sheet and three long helices. The beta-strands are packed in the sheet in the order beta 1 beta 3 beta 2 beta 4 beta 5, with beta 1, beta 3, and beta 2 parallel and beta 2, beta 4, and beta 5 arranged in an antiparallel fashion. Two of the helices connect strands of the beta-sheet: alpha 1 between beta 1 and beta 2 and alpha 2 between beta 2 and beta 3. Strands beta 4 and beta 5 are connected by a short loop that contains a beta-bulge. Strands beta 3 and beta 4 are connected by a long loop that contains a series of turn-like or 3(10) helical structures. The active site Cys-Gly-Pro-Cys sequence forms a protruding loop between strand beta 2 and helix alpha 2. The structure is very similar overall to that of oxidized (disulfide) thioredoxin obtained from X-ray crystal structure analysis but differs in the local conformation of the active site loop. The distance between the sulfurs of Cys 32 and Cys 35 increases from 2.05 A in the disulfide bridge to 6.8 +/- 0.6 A in the dithiol of reduced thioredoxin, as a result of a rotation of the side chain of Cys 35 and a significant change in the position of Pro 34. This conformational change has important implications for the mechanism of thioredoxin as a protein disulfide oxidoreductase.  相似文献   

17.
In the present study the optical biosensor technique, based on the surface plasmon resonance (SPR) phenomenon, was used for real-time measurements of the reversible binding of the pterin cofactor (6R)-l-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) and l-phenylalanine (l-Phe) to human phenylalanine hydroxylase (hPAH). When BH(4) (241 Da) was injected over the sensor chip with immobilized tetrameric wt-hPAH a positive DeltaRU response was observed with a square-wave type of sensorgram and a saturable response (about 25 RU/(pmol subunit/mm(2)) with a [S](0.5) value of 5.6 +/- 0.8 microM for the pterin cofactor. The rapid on-and-off rates were, however, not possible to determine. By contrast, when l-Phe (165 Da) was injected a time-dependent increase in RU (up to about 3 min) and a much higher saturable DeltaRU response (about 75 RU/(pmol subunit/mm(2)) at 2 mM l-Phe) than expected (i.e., <5 RU/(pmol subunit/mm(2))) from the low molecular mass of l-Phe were observed in the sensorgram. The half-time for the on-and-off rates were 6 +/- 2 and 9 +/- 1 s, respectively, at 2 mM l-Phe. The steady-state (apparent equilibrium) response revealed a hyperbolic concentration dependence with a [S](0.5) value of 98 +/- 7 microM. The [S](0.5) values of both pterin cofactor and l-Phe were lower than those determined by steady-state enzyme kinetic analysis. Evidence is presented that the DeltaRU response to l-Phe is accounted for by the global conformational transition which occurs in the enzyme upon l-Phe binding, i.e., by the slow reversible transition from a low activity state ("T"-state) to a high activity state ("R"-state) characteristic of this hysteretic enzyme.  相似文献   

18.
A high-resolution crystal structure of KvAP, an archeabacterial voltage-gated potassium (Kv) channel, complexed with a monoclonal Fab fragment has been recently determined. Based on this structure, a mechanism for the activation (opening) of Kv channels has been put forward. This mechanism has since been criticized, suggesting that the resolved structure is not representative of the family of voltage-gated potassium channels. Here, we propose a model of the transmembrane domain of Shaker B, a well-characterized Kv channel, built by homology modeling and docking calculations. In this model, the positively charged S4 helices are oriented perpendicular to the membrane and localized in the groove between segments S5 and S6 of adjacent subunits. The structure and the dynamics of the full atomistic model embedded in a hydrated lipid bilayer were investigated by means of two large-scale molecular dynamics simulations under transmembrane-voltage conditions known to induce, respectively, the resting state (closed) and the activation (opening) of voltage-gated channels. Upon activation, the model undergoes conformational changes that lead to an increase of the hydration of the charged S4 helices, correlated with an upward translation and a tilting of the latter, concurrently with movements of the S5 helices and the activation gate. Although small, these conformational changes ultimately result in an alteration of the ion-conduction pathway. Our findings support the transporter model devised by Bezanilla and collaborators, and further underline the crucial role played by internal hydration in the activation of the channel.  相似文献   

19.
The thermodynamics of self-assembly of a 14 base pair DNA double helix from complementary strands have been investigated by titration (ITC) and differential scanning (DSC) calorimetry, in conjunction with van't Hoff analysis of UV thermal scans of individual strands. These studies demonstrate that thermodynamic characterization of the temperature-dependent contributions of coupled conformational equilibria in the individual "denatured" strands and in the duplex is essential to understand the origins of duplex stability and to derive stability prediction schemes of general applicability. ITC studies of strand association at 293 K and 120 mM Na+ yield an enthalpy change of -73 +/- 2 kcal (mol of duplex)-1. ITC studies between 282 and 312 K at 20, 50, and 120 mM Na+ show that the enthalpy of duplex formation is only weakly salt concentration-dependent but is very strongly temperature-dependent, decreasing approximately linearly with increasing temperature with a heat capacity change (282-312 K) of -1.3 +/- 0.1 kcal K-1 (mol of duplex)-1. From DSC denaturation studies in 120 mM Na+, we obtain an enthalpy of duplex formation of -120 +/- 5 kcal (mol of duplex)-1 and an estimate of the corresponding heat capacity change of -0.8 +/- 0.4 kcal K-1 (mol of duplex)-1 at the Tm of 339 K. van't Hoff analysis of UV thermal scans on the individual strands indicates that single helix formation is noncooperative with a temperature-independent enthalpy change of -5.5 +/- 0.5 kcal at 120 mM Na+. From these observed enthalpy and heat capacity changes, we obtain the corresponding thermodynamic quantities for two fundamental processes: (i) formation of single helices from disordered strands, involving only intrastrand (vertical) interactions between neighboring bases; and (ii) formation of double helices by association (docking) of single helical strands, involving interstrand (horizontal and vertical) interactions. At 293 K and 120 mM Na+, we calculate that the enthalpy change for association of single helical strands is approximately -64 kcal (mol of duplex)-1 as compared to -210 kcal (mol of duplex)-1 calculated for duplex formation from completely unstructured single strands and to the experimental ITC value of -73 kcal (mol of duplex)-1. The intrinsic heat capacity change for association of single helical strands to form the duplex is found to be small and positive [ approximately 0.1 kcal K-1 (mol of duplex)-1], in agreement with the result of a surface area analysis, which also predicts an undetectably small heat capacity change for single helix formation.  相似文献   

20.
Structures of ArsA with ATP, AMP-PNP, or ADP.AlF(3) bound at the A2 nucleotide binding site were determined. Binding of different nucleotides modifies the coordination sphere of Mg(2+). In particular, the changes elicited by ADP.AlF(3) provide insights into the mechanism of ATP hydrolysis. In-line attack by water onto the gamma-phosphate of ATP would be followed first by formation of a trigonal intermediate and then by breaking of the scissile bond between the beta- and gamma-phosphates. Motions of amino acid side chains at the A2 nucleotide binding site during ATP binding and hydrolysis propagate at a distance, producing conformational changes in four different regions of the protein corresponding to helices H4-H5, helices H9-H10, helices H13-H15, and to the S1-H2-S2 region. These elements are extensions of, respectively, the Switch I and Switch II regions, the A-loop (a small loop near the nucleotide adenine moiety), and the P-loop. Based on the observed conformational changes, it is proposed that ArsA functions as a reciprocating engine that hydrolyzes 2 mol of ATP per each cycle of ion translocation across the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号