首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Characterization of human 5S rRNA genes.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

2.
Most of the ribosomal RNA genes of the yeast Saccharomyces cerevisiae are about 9 kilobases (kb) in size and encode both the 35S rRNA (processed to produce the 25S, 18S, and 5.8S species) and 5S rRNA. These genes are arranged in a single tandem array of 100 repeats. Below, we present evidence that at the centromere-distal end of this array is a tandem arrangement of a different type of rRNA gene. Each of these repeats is 3.6 kb in length and encodes a single 5S rRNA. The coding sequence of this gene is different from that of the "normal" 5S gene in three positions located at the 3' end of the gene.  相似文献   

3.
Lyme disease is the most common vector-borne disease in the United States. The causative agent is the spirochete Borrelia burgdorferi. The copy number and organization of the genes encoding the rRNAs of this organism were determined. There is a single gene for 16S rRNA and two copies each of the 23S rRNA and 5S rRNA genes. All of the genes are located within a chromosomal fragment of approximately 9.5 to 10.0 kb. The 23S and 5S rRNA genes are tandemly duplicated in the order 23S-5S-23S-5S and are apparently not linked to the 16S rRNA gene, which is situated over 2 kb upstream from the 23S-5S duplication. The individual copies of the 23S-5S duplication are separated by a 182-bp spacer. Within each 23S-5S unit, an identical 22-bp spacer separates the 23S and 5S rRNA sequences from each other. The genome organization of the 23S-5S gene cluster in a number of different B. burgdorferi isolates obtained at a number of different geographical locations, as well as in several other species of Borrelia, was investigated. All isolates of B. burgdorferi tested displayed the tandem duplication, whereas the closely related species B. hermsii, B. anserina, and B. turicatae all contained a single copy of each of the genes. In addition, different geographical isolates of B. burgdorferi can be differentiated on the basis of a restriction fragment length polymorphism associated with the 23S-5S gene cluster. This polymorphism can be a useful tool for the determination of genetic relatedness between different isolates of B. burgdorferi.  相似文献   

4.
Organization of ribosomal RNA gene repeats of the mouse.   总被引:7,自引:3,他引:4       下载免费PDF全文
The organization of the ribosomal RNA (rRNA) genes of the mouse was determined by Southern blot hybridization using cloned rDNA fragments as probes, which could encompass the entire spacer region between two rRNA gene regions. The rRNA genes are organized into tandem repeats of nearly uniform length of about 44 kb. The heterogeneity detected in the nontranscribed spacer appears to be caused by its sequence rather than its length difference. At least three kinds of repetitive sequences are present in the non-transcribed spacer region; two of them are located 13 kb upstream from the 5'-end of 18S RNA gene and the other located 1 to 4 kb downstream from the 3'-end of 28S RNA gene.  相似文献   

5.
The guinea pig has about 100 copies of the 5S rRNA gene per haploid genome and they are present in 2.1 kb tandem repeats. Three bona fide 5S rRNA genes and four pseudo genes were sequenced. The conserved external promoter (D box) found in rodents and primates is only partially present in the guinea pig. The "D box like" sequence in guinea pig only has eight of the 12 nucleotides in the conserved D box. The results are in accordance with investigations showing that the guinea pig is not a rodent. Conserved sequences in the non-transcribed spacer can therefore be useful in phylogenetic studies.  相似文献   

6.
A BamHI DNA fragment of 301 bp corresponding to the main repeating unit of 5S rRNA was isolated from barley genomic DNA. The primary nucleotide sequence of this fragment was determined and a high level of homology was found between coding sequences of 5S rRNA genes of barley, wheat and rye. At the same time, spacer's nucleotide sequences of different species of cereals were changed dramatically. At least two types of 5S rRNA tandem repeats of 301 and 450 bp were found in barley genome. Polymorphism for restriction fragment length in 5S rRNA repeats allowed to discriminate between all barley varieties used in this work.  相似文献   

7.
D Singh  M Singh 《Génome》2001,44(1):143-146
The 5S rRNA genes in the Camellia sinensis (L.) O. Kuntze (tea) genome are arranged as tandem repeat units of 300 and 325 bps. The 2 classes of tandem repeats were discovered by Southern hybridisation of tea genomic DNA with a 5S rRNA gene PCR product.  相似文献   

8.
The 5S rRNA gene of the soybean Glycine max (L.) Merr. has been cloned on a 556-bp fragment of DNA and sequenced. This fragment contains two copies of the soybean 5S rDNA sequence, one intact and one truncated, separated by noncoding DNA. We have used this clone to investigate the organization of the 5S genes within the soybean genome and the extent of their methylation. Our results demonstrate that soybean 5S genes are clustered, organized into tandem repeats of 330 bp, and extensively methylated. Hybridization of the 5S sequence to Southern transfers of soybean DNA digested with BamHI reveals a striking ladderlike pattern. Hybridization of the soybean 5S sequence to a wide variety of plant DNAs results in similar patterns, suggesting that the 5S rDNA sequence, gene organization, and methylation pattern are conserved in many higher plants.  相似文献   

9.
M Mottes  S A Tsai Lai  J Montoya  G Attardi 《Gene》1984,27(1):109-113
Several clones of rDNA have been isolated from an adult human liver DNA Charon 4A library by using cDNA probes synthesized from human 18S and 28S rRNA. The insert of one recombinant Charon 4A clone contained, besides the already known 5.7-kb EcoRI fragment of rDNA, comprising the major portion of the 18S rRNA gene and all the external transcribed spacer (ETS), a previously unidentified EcoRI fragment of rDNA of 8.5 kb in size. DNA transfer hybridization experiments utilizing EcoRI digests of the human DNA used to construct the library and of another human DNA showed the presence of the 8.5-kb EcoRI fragment in a minority of the rDNA repeats on the 5'-end side of the 5.7-kb fragment, thus defining a hitherto unidentified type of EcoRI polymorphism of these repeats.  相似文献   

10.
A cloned EcoRI fragment containing human 18 S rRNA gene sequences was used to screen a gene library to obtain a set of 8 overlapping cloned DNA segments extending into the non-transcribed spacer region of the human ribosomal RNA gene cluster. 19.4 kb of the approx. 43-kb rDNA repeat was obtained in cloned form and mapped with restriction endonucleases. None of the clones obtained extended into 28 S rRNA sequences. A 7-kb region of non-transcribed spacer DNA shared in common between five independent clones was subjected to comparative restriction digests. It was estimated that sequences among the five different spacer isolated varied by not more than 1.0%, if all the observed differences are assumed due to point mutation. HaeII-restriction fragments from within this same 7-kb region contain sequences carried not only within the tandem repeats of the gene cluster but interspersed elsewhere in the genome. Some of these sequences correspond to the Alu family of highly repeated interspersed sequences.  相似文献   

11.
In higher eukaryotes, the 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units composed of a coding region and a non-transcribed spacer sequence (NTS). These tandem arrays can be found on either one or more chromosome pairs. 5S rDNA copies from the tilapia fish, Oreochromis niloticus, were cloned and the nucleotide sequences of the coding region and of the non-transcribed spacer were determined. Moreover, the genomic organization of the 5S rDNA tandem repeats was investigated by fluorescence IN SITU hybridization (FISH) and Southern blot hybridization. Two 5S rDNA classes, one consisting of 1.4-kb repeats and another one with 0.5-kb repeats were identified and designated 5S rDNA type I and type II, respectively. An inverted 5S rRNA gene and a 5S rRNA putative pseudogene were also identified inside the tandem repeats of 5S rDNA type I. FISH permitted the visualization of the 5S rRNA genes at three chromosome loci, one of them consisting of arrays of the 5S rDNA type I, and the two others corresponding to arrays of the 5S rDNA type II. The two classes of the 5S rDNA, the presence of pseudogenes, and the inverted genes observed in the O. niloticus genome might be a consequence of the intense dynamics of the evolution of these tandem repeat elements.  相似文献   

12.
Split gene for mitochondrial 24S ribosomal RNA of Neurospora crassa.   总被引:9,自引:0,他引:9  
U Hahn  C M Lazarus  H Lünsdorf  H Küntzel 《Cell》1979,17(1):191-200
  相似文献   

13.
In the house cricket,Acheta domesticus, the 110 genes per haploid genome encoding 18S and 28S rRNA are contained within rDNA repeats which are amplified during oogenesis. The 5S rRNA coding sequences of this cricket are found in two sizes of 5S DNA repeating units (measuring 2.1 and 3.0 kb). The 3.0 kb repeats account for more than 90% of the totalAcheta 5S DNA. We have determined the number of cricket 5S rRNA genes by RNA-DNA hybridization analysis: 310 5S DNA repeats/haploid genome clearly approximates the number of 18S and 28S rRNA genes. Because of the relatively low copy number of 5S rRNA genes the possibility of 5S DNA amplification in oocytes ofA. domesticus was also examined. Although amplification of rDNA is readily detectable, amplification of 5S DNA is not observed in oocytes ofA. domesticus. Unlike the genes coding for 18S and 28S rRNA which are localized at a single chromosomal site in the genome ofA. domesticus, the 5S rRNA genes occupy numerous sites distributed along the length of most chromosomes.  相似文献   

14.
15.
16.
Summary Ribosomal DNA (rDNA) repeats of the plant-parasitic nematode Meloidogyne arenaria are heterogeneous in size and appear to contain 5S rRNA gene sequences. Moreover, in a recA + bacterial host, plasmid clones of a 9 kb rDNA repeat show deletion events within a 2 kb intergenic spacer (IGS), between 28S and 5S DNA sequences. These deletions appear to result from a reduction in the number of tandem 129 by repeats in the IGS. The loss of such repeats might explain how rDNA length heterogeneity, observed in the Meloidogyne genome, could have arisen. Each 129 by repeat also contains three copies of an 8 by subrepeat, which has sequence similarity to an element found in the IGS repeats of some plant rDNAs.  相似文献   

17.
Two lambda phage clones carrying mitochondrial-DNA-like (mtDNA-like) sequences isolated from a human gene library were named Lm E-1 and Lm C-2, and their DNA structures were characterized. Lm E-1 contains about 0.4 kb DNA homologous to the 5' portion of the mitochondrial 16S ribosomal RNA (rRNA) gene and Lm C-2, a 1.6 kb DNA homologous to the 3' portion of the 12S rRNA gene and to almost all of the 16S rRNA gene. Comparisons of their nucleotide sequences with those of the corresponding regions of the human mtDNA revealed no detectable DNA rearrangement and their homologies to the human mtDNA are 84% and 80%, respectively. There are neither terminal repeats in the nuclear mtDNA-like sequences nor duplications of the nuclear DNAs flanking the mtDNA-like sequences. Evolutionary relationship between these two human nuclear mtDNA-like sequences and the human and bovine mtDNAs is discussed.  相似文献   

18.
The 5S ribosomal RNA (rRNA) genes in eukaryotes may occur either interspersed with the other rRNA genes in the ribosomal DNA (rDNA) repeat, or in separate tandem arrays, or dispersed throughout the genome. In Pythium species and in several related Oomycetes, polymerase chain reaction (PCR) amplification of the nontranscribed spacer (NTS) region with one primer specific for the 5S gene revealed, with several exceptions, that the 5S rRNA gene was present in the rDNA repeat of those species with filamentous sporangia and was absent from the rDNA repeat of those with globose or unknown sporangia. When present, the gene was located approximately 1 kb downstream of the large-subunit rRNA gene and on the strand opposite that on which the other rRNA genes were located. This was confirmed in P. torulosum by sequencing of the gene and its flanking regions. The 5S rRNA genes of P. ultimum were found in tandem arrays outside the rDNA repeat. Evidence of dispersed 5S rRNA sequences was also observed. For many of the species of Pythium having the 5S gene in the NTS, the region between the large-subunit rRNA gene and the 5S gene was found to have length heterogeneity. Oomycetes related to Pythium were also found to have the 5S gene in the NTS, although sometimes in the opposite orientation. This may mean that the presence of the gene in the NTS is ancestral for the Oomycetes and that the absence of the gene in the NTS in those Pythiums with globose sporangia is due to loss of the gene from the rDNA repeat in an ancestor of this group of species. These results favor the view that 5S rRNA gene linkage to the rRNA cistron existed prior to the unlinked arrangement seen in most plants and animals.  相似文献   

19.
The DNA fragments coding for ribosomal RNA inCampylobacter jejuni have been cloned from a genomic library ofC. jejuni constructed inEscherichia coli. Clones carrying DNA Sequences for rRNA were identified by hybridization of 5-end-labeled rRNA fromC. jejuni to colony blots of transformants from this gene library. Cloned DNA sequences homologous to each of 5S, 16S, and 23S rRNA were idenfified by hybridization of labeled plasmid DNA to Northern blots of rRNA. The gene coding for 23S rRNA was found to be located on a 5.5kb HindIII fragment, while the 5S and 16S rRNA genes were on HindIII fragments of 1.65 and 1.7 kb, respecitively. The DNA fragment containing the 16S rRNA gene was characterized by restriction endonuclease mapping, and the location of the 16S rRNA gene on this fragment was determined by hybridization of 5-end-labeled rRNA to restriction fragments and also by DNA sequence determination. It appears that the major portion of the coding region for 16S rRNA is located on the 1.7-kb HindIII fragment, while a small portion is carried on an adjacent HindIII fragment of 7.5 kb. Cloned rRNA genes fromC. jejuni were used to study the organization of the rDNA inC. jejuni and other members of the genùsCampylobacter.  相似文献   

20.
The rRNA genes in the somatic macronucleus of Tetrahymena thermophila are normally on 21 kb linear palindromic molecules (rDNA). We examined the effect on rRNA gene dosage of transforming T.thermophila macronuclei with plasmid constructs containing a pair of tandemly repeated rDNA replication origin regions unlinked to the rRNA gene. A significant proportion of the plasmid sequences were maintained as high copy circular molecules, eventually consisting solely of tandem arrays of origin regions. As reported previously for cells transformed by a construct in which the same tandem rDNA origins were linked to the rRNA gene [Yu, G.-L. and Blackburn, E. H. (1990) Mol. Cell. Biol., 10, 2070-2080], origin sequences recombined to form linear molecules bearing several tandem repeats of the origin region, as well as rRNA genes. The total number of rDNA origin sequences eventually exceeded rRNA gene copies by approximately 20- to 40-fold and the number of circular replicons carrying only rDNA origin sequences exceeded rRNA gene copies by 2- to 3-fold. However, the rRNA gene dosage was unchanged. Hence, simply monitoring the total number of rDNA origin regions is not sufficient to regulate rRNA gene copy number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号