首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The initiation of simian virus 40 (SV40) replication requires recognition of the viral origin of replication (ori) by SV40 T antigen, followed by denaturation of ori in a reaction dependent upon human replication protein A (hRPA). To understand how origin denaturation is achieved, we constructed a 48-bp SV40 "pseudo-origin" with a central 8-nucleotide (nt) bubble flanked by viral sequences, mimicking a DNA structure found within the SV40 T antigen-ori complex. hRPA bound the pseudo-origin with similar stoichiometry and an approximately fivefold reduced affinity compared to the binding of a 48-nt single-stranded DNA molecule. The presence of hRPA not only distorted the duplex DNA flanking the bubble but also resulted in denaturation of the pseudo-origin substrate in an ATP-independent reaction. Pseudo-origin denaturation occurred in 7 mM MgCl2, distinguishing this reaction from Mg2+-independent DNA-unwinding activities previously reported for hRPA. Tests of other single-stranded DNA-binding proteins (SSBs) revealed that pseudo-origin binding correlates with the known ability of these SSBs to support the T-antigen-dependent origin unwinding activity. Our results suggest that hRPA binding to the T antigen-ori complex induces the denaturation of ori including T-antigen recognition sequences, thus releasing T antigen from ori to unwind the viral DNA. The denaturation activity of hRPA has the potential to play a significant role in other aspects of DNA metabolism, including DNA repair.  相似文献   

2.
Iftode C  Borowiec JA 《Biochemistry》2000,39(39):11970-11981
Human replication protein A (hRPA) was previously seen to efficiently bind a 48 bp simian virus 40 (SV40) "pseudo-origin" (PO) substrate that mimics a DNA structure found within the SV40 T antigen-origin (ori) complex. To understand the role of hRPA during the initiation of replication, we examined the PO sequence and structure requirements for hRPA interaction. Binding and unwinding were found to be most efficient when both strands of the central 8 nt single-stranded DNA (ssDNA) bubble region contained a polypyrimidine structure, with these activities proportionately reduced when the bubble region was replaced with a purine tract on one or both strands. Examination of the importance of the two duplex flanks indicates that the early gene side contains a DNA structural feature located one duplex turn from the bubble whose mutation significantly affects the affinity of hRPA for the substrate. When present in the context of ori, mutation of this sequence was seen to have significant effects on SV40 DNA replication in vitro and on the denaturation of ori, indicating that origin activity can be modulated by cis-acting elements which alter the hRPA binding affinity. Use of fork and overhang substrates containing 8 nt pyrimidine or purine arms demonstrates that hRPA binding to DNA involves a particular molecular polarity in which initial hRPA binding occurs on the 5' side of a ssDNA substrate, and then extends in the 3' direction to create a stably bound hRPA. These data have implications on the mechanism of the initiation of eukaryotic DNA replication as well as on the sites of nascent strand synthesis within the origin.  相似文献   

3.
4.
Human replication protein A (hRPA) is an essential single-stranded-DNA-binding protein that stimulates the activities of multiple DNA replication and repair proteins through physical interaction. To understand DNA binding and its role in hRPA heterologous interaction, we examined the physical structure of hRPA complexes with single-stranded DNA (ssDNA) by scanning transmission electron microscopy. Recent biochemical studies have shown that hRPA combines with ssDNA in at least two binding modes: by interacting with 8 to 10 nucleotides (hRPA8nt) and with 30 nucleotides (hRPA30nt). We find the relatively unstable hRPA8nt complex to be notably compact with many contacts between hRPA molecules. In contrast, on similar lengths of ssDNA, hRPA30nt complexes align along the DNA and make few intermolecular contacts. Surprisingly, the elongated hRPA30nt complex exists in either a contracted or an extended form that depends on ssDNA length. Therefore, homologous-protein interaction and available ssDNA length both contribute to the physical changes that occur in hRPA when it binds ssDNA. We used activated DNA-dependent protein kinase as a biochemical probe to detect alterations in conformation and demonstrated that formation of the extended hRPA30nt complex correlates with increased phosphorylation of the hRPA 29-kDa subunit. Our results indicate that hRPA binds ssDNA in a multistep pathway, inducing new hRPA alignments and conformations that can modulate the functional interaction of other factors with hRPA.  相似文献   

5.
Simian virus 40 (SV40) provides a model system for the study of eukaryotic DNA replication, in which the viral protein, large T antigen (Tag), marshals human proteins to replicate the viral minichromosome. SV40 replication requires interaction of Tag with the host single-stranded DNA-binding protein, replication protein A (hRPA). The C-terminal domain of the hRPA32 subunit (RPA32C) facilitates initiation of replication, but whether it interacts with Tag is not known. Affinity chromatography and NMR revealed physical interaction between hRPA32C and the Tag origin DNA-binding domain, and a structural model of the complex was determined. Point mutations were then designed to reverse charges in the binding sites, resulting in substantially reduced binding affinity. Corresponding mutations introduced into intact hRPA impaired initiation of replication and primosome activity, implying that this interaction has a critical role in assembly and progression of the SV40 replisome.  相似文献   

6.
Replication protein A (RPA) is a eukaryotic single-stranded DNA (ssDNA) binding protein that plays critical roles in most aspects of genome maintenance, including replication, recombination and repair. RPA binds ssDNA with high affinity, destabilizes DNA secondary structure and facilitates binding of other proteins to ssDNA. However, RPA must be removed from or redistributed along ssDNA during these processes. To probe the dynamics of RPA–DNA interactions, we combined ensemble and single-molecule fluorescence approaches to examine human RPA (hRPA) diffusion along ssDNA and find that an hRPA heterotrimer can diffuse rapidly along ssDNA. Diffusion of hRPA is functional in that it provides the mechanism by which hRPA can transiently disrupt DNA hairpins by diffusing in from ssDNA regions adjacent to the DNA hairpin. hRPA diffusion was also monitored by the fluctuations in fluorescence intensity of a Cy3 fluorophore attached to the end of ssDNA. Using a novel method to calibrate the Cy3 fluorescence intensity as a function of hRPA position on the ssDNA, we estimate a one-dimensional diffusion coefficient of hRPA on ssDNA of D1 ~ 5000 nt2 s− 1 at 37 °C. Diffusion of hRPA while bound to ssDNA enables it to be readily repositioned to allow other proteins access to ssDNA.  相似文献   

7.
Dimerization of simian virus 40 T-antigen hexamers (TAgH) into double hexamers (TAgDH) on model DNA replication forks has been found to greatly stimulate T-antigen DNA helicase activity. To explore the interaction of TAgDH with DNA during unwinding, we examined the binding of TAgDH to synthetic DNA replication bubbles. Tests of replication bubble substrates containing different single-stranded DNA (ssDNA) lengths indicated that efficient formation of a TAgDH requires ≥40 nucleotides (nt) of ssDNA. DNase I probing of a substrate containing a 60-nt ssDNA bubble complexed with a TAgDH revealed that T antigen bound the substrate with twofold symmetry. The strongest protection was observed over the 5′ junction on each strand, with 5 bp of duplex DNA and ~17 nt of adjacent ssDNA protected from nuclease cleavage. Stimulation of the T-antigen DNA helicase activity by an increase in ATP concentration caused the protection to extend in the 5′ direction into the duplex region, while resulting in no significant changes to the 3′ edge of strongest protection. Our data indicate that each TAgH encircles one ssDNA strand, with a different strand bound at each junction. The process of DNA unwinding results in each TAgH interacting with a greater length of DNA than was initially bound, suggesting the generation of a more highly processive helicase complex.  相似文献   

8.
Escherichia coli SSB (EcSSB) is a model single-stranded DNA (ssDNA) binding protein critical in genome maintenance. EcSSB forms homotetramers that wrap ssDNA in multiple conformations to facilitate DNA replication and repair. Here we measure the binding and wrapping of many EcSSB proteins to a single long ssDNA substrate held at fixed tensions. We show EcSSB binds in a biphasic manner, where initial wrapping events are followed by unwrapping events as ssDNA-bound protein density passes critical saturation and high free protein concentration increases the fraction of EcSSBs in less-wrapped conformations. By destabilizing EcSSB wrapping through increased substrate tension, decreased substrate length, and protein mutation, we also directly observe an unstable bound but unwrapped state in which ∼8 nucleotides of ssDNA are bound by a single domain, which could act as a transition state through which rapid reorganization of the EcSSB–ssDNA complex occurs. When ssDNA is over-saturated, stimulated dissociation rapidly removes excess EcSSB, leaving an array of stably-wrapped complexes. These results provide a mechanism through which otherwise stably bound and wrapped EcSSB tetramers are rapidly removed from ssDNA to allow for DNA maintenance and replication functions, while still fully protecting ssDNA over a wide range of protein concentrations.  相似文献   

9.
All cellular single-stranded (ss) DNA is rapidly bound and stabilized by single stranded DNA-binding proteins (SSBs). Replication protein A, the main eukaryotic SSB, is able to unwind double-stranded (ds) DNA by binding and stabilizing transiently forming bubbles of ssDNA. Here, we study the dynamics of human RPA (hRPA) activity on topologically constrained dsDNA with single-molecule magnetic tweezers. We find that the hRPA unwinding rate is exponentially dependent on torsion present in the DNA. The unwinding reaction is self-limiting, ultimately removing the driving torsional stress. The process can easily be reverted: release of tension or the application of a rewinding torque leads to protein dissociation and helix rewinding. Based on the force and salt dependence of the in vitro kinetics we anticipate that the unwinding reaction occurs frequently in vivo. We propose that the hRPA unwinding reaction serves to protect and stabilize the dsDNA when it is structurally destabilized by mechanical stresses.  相似文献   

10.
Park CJ  Lee JH  Choi BS 《Nucleic acids research》2005,33(13):4172-4181
Replication protein A (RPA) is a three-subunit complex with multiple roles in DNA metabolism. DNA-binding domain A in the large subunit of human RPA (hRPA70A) binds to single-stranded DNA (ssDNA) and is responsible for the species-specific RPA–T antigen (T-ag) interaction required for Simian virus 40 replication. Although Saccharomyces cerevisiae RPA70A (scRPA70A) shares high sequence homology with hRPA70A, the two are not functionally equivalent. To elucidate the similarities and differences between these two homologous proteins, we determined the solution structure of scRPA70A, which closely resembled the structure of hRPA70A. The structure of ssDNA-bound scRPA70A, as simulated by residual dipolar coupling-based homology modeling, suggested that the positioning of the ssDNA is the same for scRPA70A and hRPA70A, although the conformational changes that occur in the two proteins upon ssDNA binding are not identical. NMR titrations of hRPA70A with T-ag showed that the T-ag binding surface is separate from the ssDNA-binding region and is more neutral than the corresponding part of scRPA70A. These differences might account for the species-specific nature of the hRPA70A–T-ag interaction. Our results provide insight into how these two homologous RPA proteins can exhibit functional differences, but still both retain their ability to bind ssDNA.  相似文献   

11.
A single-stranded DNA-dependent ATPase from monkey kidney tissue culture cells (CV-1) has been found associated with SV40 chromatin. This ATPase activity is distinguishable from the ATPase activity of T-antigen by the following properties: the Km for ATP, elution from phosphocellulose, and stimulation of the ATPase activity by single-stranded DNA but not by double-stranded DNA. The ATPase has been isolated and characterized from the nuclei of uninfected cells. ATP hydrolysis is dependent on single-stranded DNA and a divalent cation. The km values for ATP and single-stranded DNA are 0.024 mM and 0.09 microgram/ml, respectively. The affinity of the ATPase for single-stranded DNA is sufficiently high that the enzyme co-sediments with single-stranded DNA in glycerol gradients. The binding of single-stranded DNA is independent of ATP and MgCl2; however, ATP hydrolysis increases the exchange of enzyme between different DNA molecules. Form I (superhelical) SV40 DNA is also a substrate for ATPase binding, but relaxed Form I, Form II (nicked circular), and double-stranded linear SV40 DNAs are not substrates. Because the DNA helix within chromatin is not under the same kind of tortional strain as Form I DNA, we hypothesize that the ATPase is bound to the single-stranded regions of replication forks in the SV40 chromatin.  相似文献   

12.
13.
The biochemical activities of a series of transformation-competent, replication-defective large T-antigen point mutants were examined. The assays employed reflect partial reactions required for the in vitro replication of simian virus 40 (SV40) DNA. Mutants which failed to bind specifically to SV40 origin sequences bound efficiently to single-stranded DNA and exhibited nearly wild-type levels of helicase activity. A mutation at proline 522, however, markedly reduced ATPase, helicase, and origin-specific unwinding activities. This mutant bound specifically to the SV40 origin of replication, but under certain conditions it was defective in binding to both single-stranded DNA and the partial duplex helicase substrate. This suggests that additional determinants outside the amino-terminal-specific DNA-binding domain may be involved in nonspecific binding of T antigen to single-stranded DNA and demonstrates that origin-specific DNA binding can be separated from binding to single-stranded DNA. A mutant containing a lesion at residue 224 retained nearly wild-type levels of helicase activity and recognized SV40 origin sequences, yet it failed to function in an origin-specific unwinding assay. This provides evidence that origin recognition and helicase activities are not sufficient for unwinding to occur. The distribution of mutant phenotypes reflects the complex nature of the initiation reaction and the multiplicity of functions provided by large T antigen.  相似文献   

14.
Although structures of single-stranded (ss)DNA-binding proteins (SSBs) have been reported with and without ssDNA, the mechanism of ssDNA binding in eukarya remains speculative. Here we report a 2.5 Angstroms structure of the ssDNA-binding domain of human replication protein A (RPA) (eukaryotic SSB), for which we previously reported a structure in complex with ssDNA. A comparison of free and bound forms of RPA revealed that ssDNA binding is associated with a major reorientation between, and significant conformational changes within, the structural modules--OB-folds--which comprise the DNA-binding domain. Two OB-folds, whose tandem orientation was stabilized by the presence of DNA, adopted multiple orientations in its absence. Within the OB-folds, extended loops implicated in DNA binding significantly changed conformation in the absence of DNA. Analysis of intermolecular contacts suggested the possibility that other RPA molecules and/or other proteins could compete with DNA for the same binding site. Using this mechanism, protein-protein interactions can regulate, and/or be regulated by DNA binding. Combined with available biochemical data, this structure also suggested a dynamic model for the DNA-binding mechanism.  相似文献   

15.
The origin-binding domain (OBD) of simian virus 40 (SV40) large T-antigen (T-Ag) is essential for many of T-Ag's interactions with DNA. Nevertheless, many important issues related to DNA binding, for example, how single-stranded DNA (ssDNA) transits along the T-Ag OBD, have yet to be established. Therefore, X-ray crystallography was used to determine the costructure of the T-Ag OBD bound to DNA substrates such as the single-stranded region of a forked oligonucleotide. A second structure of the T-Ag OBD crystallized in the presence of poly(dT)(12) is also reported. To test the conclusions derived from these structures, residues identified as being involved in binding to ssDNA by crystallography or by an earlier nuclear magnetic resonance study were mutated, and their binding to DNA was characterized via fluorescence anisotropy. In addition, these mutations were introduced into full-length T-Ag, and these mutants were tested for their ability to support replication. When considered in terms of additional homology-based sequence alignments, our studies refine our understanding of how the T-Ag OBDs encoded by the polyomavirus family interact with ssDNA, a critical step during the initiation of DNA replication.  相似文献   

16.
Rad52 promotes the annealing of complementary strands of DNA bound by replication protein A (RPA) during discrete repair pathways. Here, we used a fluorescence resonance energy transfer (FRET) between two fluorescent dyes incorporated into DNA substrates to probe the mechanism by which human Rad52 (hRad52) interacts with and mediates annealing of ssDNA–hRPA complexes. Human Rad52 bound ssDNA or ssDNA–hRPA complex in two, concentration-dependent modes. At low hRad52 concentrations, ssDNA was wrapped around the circumference of the protein ring, while at higher protein concentrations, ssDNA was stretched between multiple hRad52 rings. Annealing by hRad52 occurred most efficiently when each complementary DNA strand or each ssDNA–hRPA complex was bound by hRad52 in a wrapped configuration, suggesting homology search and annealing occur via two hRad52–ssDNA complexes. In contrast to the wild type protein, hRad52RQK/AAA and hRad521–212 mutants with impaired ability to bind hRPA protein competed with hRPA for binding to ssDNA and failed to counteract hRPA-mediated duplex destabilization highlighting the importance of hRad52-hRPA interactions in promoting efficient DNA annealing.  相似文献   

17.
Wu C  Roy R  Simmons DT 《Journal of virology》2001,75(6):2839-2847
We have previously mapped the single-stranded DNA binding domain of large T antigen to amino acid residues 259 to 627. By using internal deletion mutants, we show that this domain most likely begins after residue 301 and that the region between residues 501 and 550 is not required. To study the function of this binding activity, a series of single-point substitutions were introduced in this domain, and the mutants were tested for their ability to support simian virus 40 (SV40) replication and to bind to single-stranded DNA. Two replication-defective mutants (429DA and 460EA) were grossly impaired in single-stranded DNA binding. These two mutants were further tested for other biochemical activities needed for viral DNA replication. They bound to origin DNA and formed double hexamers in the presence of ATP. Their ability to unwind origin DNA and a helicase substrate was severely reduced, although they still had ATPase activity. These results suggest that the single-stranded DNA binding activity is involved in DNA unwinding. The two mutants were also very defective in structural distortion of origin DNA, making it likely that single-stranded DNA binding is also required for this process. These data show that single-stranded DNA binding is needed for at least two steps during SV40 DNA replication.  相似文献   

18.
The single-stranded DNA-binding protein, Replication Protein A (RPA), is a heterotrimeric complex with subunits of 70, 32 and 14 kDa involved in DNA metabolism. RPA may be a target for cellular regulation; the 32 kDa subunit (RPA32) is phosphorylated by several cellular kinases including the DNA-dependent protein kinase (DNA-PK). We have purified a mutant hRPA complex lacking amino acids 1-33 of RPA32 (rhRPA x 32delta1-33). This mutant bound ssDNA and supported DNA replication; however, rhRPA x 32delta1-33 was not phosphorylated under replication conditions or directly by DNA-PK. Proteolytic mapping revealed that all the sites phosphorylated by DNA-PK are contained on residues 1-33 of RPA32. When wild-type RPA was treated with DNA-PK and the mixture added to SV40 replication assays, DNA replication was supported. In contrast, when rhRPA x 32delta1-33 was treated with DNA-PK, DNA replication was strongly inhibited. Because untreated rhRPA x 32delta1-33 is fully functional, this suggests that the N-terminus of RPA is needed to overcome inhibitory effects of DNA-PK on other components of the DNA replication system. Thus, phosphorylation of RPA may modulate DNA replication indirectly, through interactions with other proteins whose activity is modulated by phosphorylation.  相似文献   

19.
Single-stranded DNA binding proteins (SSBs) have been isolated from many organisms, including Escherichia coli, Saccharomyces cerevisiae and humans. Characterization of these proteins suggests they are required for DNA replication and are active in homologous recombination. As an initial step towards understanding the role of the eukaryotic SSBs in DNA replication and recombination, we examined the DNA binding and strand exchange stimulation properties of the S. cerevisiae single-strand binding protein y-RPA (yeast replication protein A). y-RPA was found to bind to single-stranded DNA (ssDNA) as a 115,000 M(r) heterotrimer containing 70,000, 36,000 and 14,000 M(r) subunits. It saturated ssDNA at a stoichiometry of one heterotrimer per 90 to 100 nucleotides and binding occurred with high affinity (K omega greater than 10(9) M-1) and co-operativity (omega = 10,000 to 100,000). Electron microscopic analysis revealed that y-RPA binding was highly co-operative and that the ssDNA present in y-RPA-ssDNA complexes was compacted fourfold, arranged into nucleosome-like structures, and was free of secondary structure. y-RPA was also tested for its ability to stimulate the yeast Sepl and E. coli RecA strand-exchange proteins. In an assay that measures the pairing of circular ssDNA with homologous linear duplex DNA, y-RPA stimulated the strand-exchange activity of Sepl approximately threefold and the activity of RecA protein to the same extent as did E. coli SSB. Maximal stimulation of Sepl occurred at a stoichiometry of one y-RPA heterotrimer per 95 nucleotides of ssDNA. y-RPA stimulated RecA and Sepl mediated strand exchange reactions in a manner similar to that observed for the stimulation of RecA by E. coli SSB; in both of these reactions, y-RPA inhibited the aggregation of ssDNA and promoted the co-aggregation of single-stranded and double-stranded linear DNA. These results demonstrate that the E. coli and yeast SSBs display similar DNA-binding properties and support a model in which y-RPA functions as an E. coli SSB-like protein in yeast.  相似文献   

20.
Human replication protein A (hRPA), a heterotrimeric single-stranded DNA (ssDNA) binding protein, is required for many cellular pathways including DNA damage repair, recombination, and replication as well as the ATR-mediated DNA damage response. While extensive effort has been devoted to understanding the structural relationships between RPA and ssDNA, information is currently limited to the RPA domains, the trimerization core, and a partial cocrystal structure. In this work, we employed a mass spectrometric protein footprinting method of single amino acid resolution to investigate the interactions of the entire heterotrimeric hRPA with ssDNA. In particular, we monitored surface accessibility of RPA lysines with NHS-biotin modification in the contexts of the free protein and the nucleoprotein complex. Our results not only indicated excellent agreement with the available crystal structure data for RPA70 DBD-AB-ssDNA complex but also revealed new protein contacts in the nucleoprotein complex. In addition to two residues, K263 and K343 of p70, previously identified by cocrystallography as direct DNA contacts, we observed protection of five additional lysines (K183, K259, K489, K577, and K588 of p70) upon ssDNA binding to RPA. Three residues, K489, K577, and K588, are located in ssDNA binding domain C and are likely to establish the direct contacts with cognate DNA. In contrast, no ssDNA-contacting lysines were identified in DBD-D. In addition, two lysines, K183 and K259, are positioned outside the putative ssDNA binding cleft. We propose that the protection of these lysines could result from the RPA interdomain structural reorganization induced by ssDNA binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号