共查询到20条相似文献,搜索用时 0 毫秒
1.
Vesicular stomatitis viruses expressing wild-type or mutant M proteins activate apoptosis through distinct pathways 下载免费PDF全文
Vesicular stomatitis virus (VSV) induces apoptosis by at least two mechanisms. The viral matrix (M) protein induces apoptosis via the mitochondrial pathway due to the inhibition of host gene expression. However, in some cell types, the inhibition of host gene expression by VSV expressing wild-type (wt) M protein delays VSV-induced apoptosis, indicating that another mechanism is involved. In support of this, the recombinant M51R-M (rM51R-M) virus, expressing a mutant M protein that is defective in its ability to inhibit host gene expression, induces apoptosis much more rapidly in L929 cells than do viruses expressing wt M protein. Here, we determine the caspase pathways by which the rM51R-M virus induces apoptosis. An analysis of caspase activity, using fluorometric caspase assays and Western blots, indicated that each of the main initiator caspases, caspase-8, caspase-9, and caspase-12, were activated during infection with the rM51R-M virus. The overexpression of Bcl-2, an inhibitor of the mitochondrial pathway, or MAGE-3, an inhibitor of caspase-12 activation, did not delay apoptosis induction in rM51R-M virus-infected L929 cells. However, an inhibitor of caspase-8 activity significantly delayed apoptosis induction. Furthermore, the inhibition of caspase-8 activity prevented the activation of caspase-9, suggesting that caspase-9 is activated by cross talk with caspase-8. These data indicate that VSV expressing the mutant M protein induces apoptosis via the death receptor apoptotic pathway, a mechanism distinct from that induced by VSV expressing the wt M protein. 相似文献
2.
Curcumin has anti‐oxidant, anti‐cancer and anti‐carcinogen property. Our laboratory had previously reported that, curcumin treatment induces reactive oxygen species (ROS) generation in HT‐29 cell line, an effect contradictory to its anti‐oxidant property. This study evaluates the role of p53 in curcumin mediated ROS generation and cell death. Curcumin induced ROS was determined by 2’,7’‐dichlorofluorescein and apoptosis by Hoechst33342/PI staining in HT‐29 and HCT‐116 cell lines. ROS generation occurs within 1 hour of 40 µM curcumin treatment and a reduction was observed by third hour in HCT‐116 insinuating p53 involvement. N‐acetyl cysteine (NAC) pre‐treatment effectively quenched ROS and inhibited membrane potential loss in HT‐29, but less effective in HCT‐116. Mitochondrial membrane potential loss is evident with 10 and 40 µM curcumin in HCT‐116 and at 40 µM curcumin in HT‐29. Total p53 protein level increase was observed by 24 hours in HCT‐116 upon NAC pre‐treatment. Our results indicate that curcumin induces ROS mediated cell death in colon adenocarcinoma cell lines and may be mediated via p53. 相似文献
3.
Human wild type (WT) and mutant alpha-synuclein (alpha-syn) genes were overexpressed using a Tet-on expression system in stably transfected dopaminergic MN9D cells. Their overexpression induced caspase-independent and dopamine-related apoptosis not rescued by general caspase inhibitor Z-VAD-FMK. While apoptosis due to overexpression of WT alpha-syn was completely abrogated by a specific tyrosine hydroxylase (TH) inhibitor, alpha-methyl-p-tyrosine (alpha-MT), the inhibitor only partially rescued apoptosis caused by overexpression of alpha-syn mutants. In addition, overexpression of mutants enhanced the toxicity of 1-methyl-4-phenylpyridinium (MPP+) and 6-hydroxyldopamine (6-OHDA) to MN9D cells, whereas overexpression of WT protected MN9D cells against MPP+ toxicity, but not against 6-OHDA. We conclude that WT alpha-syn is beneficial to dopaminergic neurons but its overexpression in the presence of endogenous dopamine makes it a potential threat to the cells. In contrast, mutant alpha-syn not only caused the loss of WT protective function but also the gain-of-toxicity which becomes more serious in the presence of dopamine and neurotoxins. 相似文献
4.
5.
Packham G Lahti JM Fee BE Gawn JM Coustan-Smith E Campana D Douglas I Kidd VJ Ghosh S Cleveland JL 《Cell death and differentiation》1997,4(2):130-139
The p55 tumor necrosis factor (TNF) receptor and the Fas (CD95/APO-1) receptor share an intracellular domain necessary to induce apoptosis, suggesting they utilize common signaling pathways. To define pathways triggered by Fas and TNF-alpha we utilized human CEM-C7 T-cells. As expected, stimulation of either receptor induced apoptosis and TNF-alpha-induced signaling included the activation of NF-kappaB. Surprisingly, Fas-induced signaling also triggered the activation of NF-kappaB in T cells, yet the kinetics of NF-kappaB induction by Fas was markedly delayed. NF-kappaB activation by both pathways was persistent and due to the sequential degradation of IkappaB-alpha and IkappaB-beta. However, the kinetics of IkappaB degradation were different and there were differential effects of protease inhibitors and antioxidants on NF-kappaB activation. Signaling pathways leading to activation of apoptosis were similarly separable and were also independent of NF-kappaB activation. Thus, the Fas and TNF receptors utilize distinct signal transduction pathways in T-cells to induce NF-kappaB and apoptosis. 相似文献
6.
Jordan JJ Menendez D Inga A Noureddine M Nourredine M Bell DA Bell D Resnick MA 《PLoS genetics》2008,4(6):e1000104
Sequence-specific binding by the human p53 master regulator is critical to its tumor suppressor activity in response to environmental stresses. p53 binds as a tetramer to two decameric half-sites separated by 0-13 nucleotides (nt), originally defined by the consensus RRRCWWGYYY (n = 0-13) RRRCWWGYYY. To better understand the role of sequence, organization, and level of p53 on transactivation at target response elements (REs) by wild type (WT) and mutant p53, we deconstructed the functional p53 canonical consensus sequence using budding yeast and human cell systems. Contrary to early reports on binding in vitro, small increases in distance between decamer half-sites greatly reduces p53 transactivation, as demonstrated for the natural TIGER RE. This was confirmed with human cell extracts using a newly developed, semi-in vitro microsphere binding assay. These results contrast with the synergistic increase in transactivation from a pair of weak, full-site REs in the MDM2 promoter that are separated by an evolutionary conserved 17 bp spacer. Surprisingly, there can be substantial transactivation at noncanonical (1/2)-(a single decamer) and (3/4)-sites, some of which were originally classified as biologically relevant canonical consensus sequences including PIDD and Apaf-1. p53 family members p63 and p73 yielded similar results. Efficient transactivation from noncanonical elements requires tetrameric p53, and the presence of the carboxy terminal, non-specific DNA binding domain enhanced transactivation from noncanonical sequences. Our findings demonstrate that RE sequence, organization, and level of p53 can strongly impact p53-mediated transactivation, thereby changing the view of what constitutes a functional p53 target. Importantly, inclusion of (1/2)- and (3/4)-site REs greatly expands the p53 master regulatory network. 相似文献
7.
8.
9.
Robinson P Mirza M Knott A Abdulrazzak H Willott R Marston S Watkins H Redwood C 《The Journal of biological chemistry》2002,277(43):40710-40716
We have compared the in vitro regulatory properties of recombinant human cardiac troponin reconstituted using wild type troponin T with troponin containing the DeltaLys-210 troponin T mutant that causes dilated cardiomyopathy (DCM) and the R92Q troponin T known to cause hypertrophic cardiomyopathy (HCM). Troponin containing DeltaLys-210 troponin T inhibited actin-tropomyosin-activated myosin subfragment-1 ATPase activity to the same extent as wild type at pCa8.5 (>80%) but produced substantially less enhancement of ATPase at pCa4.5. The Ca(2+) sensitivity of ATPase activation was increased (DeltapCa(50) = +0.2 pCa units) and cooperativity of Ca(2+) activation was virtually abolished. Equimolar mixtures of wild type and DeltaLys-210 troponin T gave a lower Ca(2+) sensitivity than with wild type, while maintaining the diminished ATPase activation at pCa4.5 observed with 100% mutant. In contrast, R92Q troponin gave reduced inhibition at pCa8.5 but greater activation than wild type at pCa4.5; Ca(2+) sensitivity was increased but there was no change in cooperativity. In vitro motility assay of reconstituted thin filaments confirmed the ATPase results and moreover indicated that the predominant effect of the DeltaLys-210 mutation was a reduced sliding speed. The functional consequences of this DCM mutation are qualitatively different from the R92Q or any other studied HCM troponin T mutation, suggesting that DCM and HCM may be triggered by distinct primary stimuli. 相似文献
10.
11.
Ursodeoxycholic acid (UDCA), a component of bile acid, which is abundant in the gall bladder of bears, has been used in clinical medicine for cholestatic liver diseases. Recently, it was demonstrated that UDCA and its derivative tauroursodeoxycholic acid block apoptotic cell death in both hepatic and non-hepatic cells. Cisplatin, an effective anti-cancer drug, is known to cause sensory neuropathy in patients receiving the drug. In the present study, whether UDCA is effective in blocking cisplatin-induced cell death in mouse hybrid sensory neurons was conducted. N18D3 mouse hybrid sensory neurons exposed to cisplatin were found to undergo apoptotic cell death. Preincubation with UDCA completely blocked cisplatin-induced apoptotic cell death in the sensory neurons, and cisplatin-induced p53 accumulation was suppressed by UDCA treatment. These results indicate that UDCA has a neuroprotective effect on the cisplatin-induced neuronal cell death of sensory neurons via the downregulation of the p53 signaling pathway. 相似文献
12.
The xylanolytic system from Cellulomonas flavigena was enhanced by adding cellulose to the growth medium. The Solka floc:xylan (60:40 w/w) mixture induced xylanase synthesis by more than 3-fold over that induced by growing C. flavigena, wild type and its mutant PN-120 on pure xylan. The hydrolysis pattern of sugar cane bagasse and xylan indicated the presence of debranching endo-;-xylanase activity. 相似文献
13.
Escherichia coli 6-phosphofructo-1-kinase was inhibited by high concentrations of ATP at alkaline pH. The mechanism of the inhibition was studied with two mutants generated by site-directed mutagenesis; I126A, with a Km for fructose-6-P that was more than two orders of magnitude higher than that of wild type but with minimal changes in kcat and Km for ATP, and R72H, with little change in substrate half-saturation concentrations but with a kcat that was 300-fold lower that of wild type enzyme. ATP and fructose-6-P interacted in a mutually antagonistic manner; that is ATP decreased the apparent affinity for fructose-6-P and vice versa. The half-saturation concentrations for both substrates, most strikingly fructose-6-P, increased with increasing pH while the kcat increased. Studies with I126A suggested that ATP inhibition was not dependent on a dissociable group with a pK in the alkaline range and that the inhibition was not caused by abortive binding of substrate to the wrong substrate site. Inhibition was not the result of differential affinity of ATP for the R and T states of the enzyme. The low kcat mutant, R72H, did not display ATP inhibition. These data indicate that ATP inhibition results from substrate antagonism coupled with a steady state random mechanism wherein the high rate of catalysis does not permit equilibration of substrates. 相似文献
14.
Chiara Parravicini Maria P Abbracchio Piercarlo Fantucci Graziella Ranghino 《BMC structural biology》2010,10(1):8
Background
GPR17 is a hybrid G-protein-coupled receptor (GPCR) activated by two unrelated ligand families, extracellular nucleotides and cysteinyl-leukotrienes (cysteinyl-LTs), and involved in brain damage and repair. Its exploitment as a target for novel neuro-reparative strategies depends on the elucidation of the molecular determinants driving binding of purinergic and leukotrienic ligands. Here, we applied docking and molecular dynamics simulations (MD) to analyse the binding and the forced unbinding of two GPR17 ligands (the endogenous purinergic agonist UDP and the leukotriene receptor antagonist pranlukast from both the wild-type (WT) receptor and a mutant model, where a basic residue hypothesized to be crucial for nucleotide binding had been mutated (R255I) to Ile. 相似文献15.
A proteinase which can activate human, dog and rat plasminogen to plasmin has been isolated from the urine of female rats, using affinity chromatography on benzamidine-coupled Sepharose. Inhibition by diisopropylfluorophosphate, tosyl-L-lysine chloromethylketone and benzamidine classified the enzyme as trypsin-like. The proteinase has weak activity on alpha-casein and hemoglobin, but will not lyse fibrin clots. It readily cleaves arginyl amides, including synthetic substrates specific for human glandular kallikrein and other serine proteinases. A chromogenic substrate for human urokinase (pyro Glu-Gly-Arg-pNA) is a poor substrate for the rat proteinase. Characteristics of the enzyme, such as its molecular weight (25 900), kinetic parameters and inhibition by aprotinin, indicate that this proteinase is esterase A, described by several investigators. Esterase A is shown not to be a true urinary plasminogen activator but rather is a unique arginine-specific proteinase. Urokinase-like and kallikrein-like activity are part of a broader proteolytic activity displayed by this enzyme. 相似文献
16.
Miroslav Fojta Hana Pivonkova Marie Brazdova Katerina Nemcova Jan Palecek Borivoj Vojtesek 《European journal of biochemistry》2004,271(19):3865-3876
The tumor suppressor protein, p53, selectively binds to supercoiled (sc) DNA lacking the specific p53 consensus binding sequence (p53CON). Using p53 deletion mutants, we have previously shown that the p53 C-terminal DNA-binding site (CTDBS) is critical for this binding. Here we studied supercoil-selective binding of bacterially expressed full-length p53 using modulation of activity of the p53 DNA-binding domains by oxidation of cysteine residues (to preclude binding within the p53 core domain) and/or by antibodies mapping to epitopes at the protein C-terminus (to block binding within the CTDBS). In the absence of antibody, reduced p53 preferentially bound scDNA lacking p53CON in the presence of 3 kb linear plasmid DNAs or 20 mer oligonucleotides, both containing and lacking the p53CON. Blocking the CTDBS with antibody caused reduced p53 to bind equally to sc and linear or relaxed circular DNA lacking p53CON, but with a high preference for the p53CON. The same immune complex of oxidized p53 failed to bind DNA, while oxidized p53 in the absence of antibody restored selective scDNA binding. Antibodies mapping outside the CTDBS did not prevent p53 supercoil-selective (SCS) binding. These data indicate that the CTDBS is primarily responsible for p53 SCS binding. In the absence of the SCS binding, p53 binds sc or linear (relaxed) DNA via the p53 core domain and exhibits strong sequence-specific binding. Our results support a hypothesis that alterations to DNA topology may be a component of the complex cellular regulatory mechanisms that control the switch between latent and active p53 following cellular stress. 相似文献
17.
18.
19.
BackgroundHuman Adenovirus (HAdV) can cause severe respiratory symptoms in people with low immunity and there is no targeted treatment for adenovirus infection. Anti-adenoviral drugs have high clinical significance for inhibiting adenovirus infection. Selenium (Se) plays an important role in anti-oxidation, redox signal transduction, and redox homeostasis. The excellent biological activity of Se is mainly achieved by being converted into selenocystine (SeC). Se participates in the active sites of various selenoproteins in the form of SeC. The ability of SeC to resist the virus has raised high awareness due to its unique antioxidative activity in recent years. The antiviral ability of the SeC was determined by detecting the infection rate of the virus in the cells.MethodsThe experiment mainly investigated the antiviral mechanism of SeC by locating the virus in the cell, detecting the generation of ROS, observing the DNA status of the cell, and monitoring the mitochondrial membrane potential.ResultsIn the present study, SeC was designed to resist A549 cells infections caused by HAdV-14. SeC could prevent HAdV-14 from causing cell apoptosis-related to DNA damage. SeC significantly inhibited ROS generation and protect the cells from oxidative damage induced by ROS against HAdV-14. SeC induced the increase of antiviral cytokines such as IL-6 and IL-8 by activating the Jak2 signaling pathway, and repaired DNA lesions by suppressing ATR, p53, and PARP signaling pathways.ConclusionSeC might provide an effective selenium species with antiviral properties for the therapies against HAdV-14. 相似文献
20.